Microstructure evolution during AlSi10Mg molten alloy/BN microflake interactions in metal matrix composites obtained through 3D printing

Konopatsky A.S., Kvashnin D.G., Corthay S., Boyarintsev I., Firestein K.L., Orekhov A., Arkharova N., Golberg D.V., Shtansky D.V.
Тип документаJournal Article
Дата публикации2021-04-16
Название журналаJournal of Alloys and Compounds
ИздательElsevier
Квартиль по SCImagoQ1
Квартиль по Web of ScienceQ1
Импакт-фактор 20216.37
ISSN09258388
Materials Chemistry
Metals and Alloys
Mechanical Engineering
Mechanics of Materials
Краткое описание
Abstract Utilization of metal/ceramic powders opens new possibilities for 3D printing of metal matrix composites of complex shape with high strength, but it is still a great challenge. In this work, an AlSi10Mg matrix composite embedded with 1 wt.% of hexagonal BN phase microflakes (h-BN) was obtained by means of 3D printing. Then the present study elucidated microstructure evolutions occurring at the h-BN/melt interface during selective laser melting (SLM) of an h-BN-AlSi10Mg powder mixture. During short-term (0.15 ms) high-temperature (∼2900 K) processing the BN inclusions partly dissolved in the Al-Si melt. This process was accompanied by the formation of an AlN phase at the BN surfaces. The AlN crystallites, 100-200 nm in size, had spherical/semispherical shape and formed a continuous layer along the BN/metal grain boundaries. The peculiar growth of AlN grains along the metal/BN interfaces was governed by the specific features of localized N diffusion in the vicinity of interfaces. By contrast, B atoms, released from the dissolved BN phase, were randomly distributed over the melt. AlB2 nanocrystallites (∼10 nm in size) precipitated from the supersaturated Al-Si melt during cooling stage. With the addition of h-BN microflakes, the composite hardness and tensile strength increased by 32% and 28%, respectivelly. The observed experimental results were supported by ab initio molecular dynamics simulations. Our study demonstrates the possibility and wide prospects of obtaining a dense BN/AlSi10Mg material reinforced with h-BN, AlN, and AlB2 phases via SLM 3D printing and sheds a new light on fine morphological and microstructural features of thus obtained new composites.
Пристатейные ссылки: 50
Цитируется в публикациях: 12
Microstructure evolution and mechanical property response via 3D printing parameter development of Al–Sc alloy
Kuo C.N., Chua C.K., Peng P.C., Chen Y.W., Sing S.L., Huang S., Su Y.L.
Q1 Virtual and Physical Prototyping 2019 цитирований: 66
Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review
Yu W.H., Sing S.L., Chua C.K., Kuo C.N., Tian X.L.
Q1 Progress in Materials Science 2019 цитирований: 150
Al − BN interaction in a high-strength lightweight Al/BN metal-matrix composite: Theoretical modelling and experimental verification
Kvashnin D.G., Firestein K.L., Popov Z.I., Corthay S., Sorokin P.B., Golberg D.V., Shtansky D.V.
Q1 Journal of Alloys and Compounds 2019 цитирований: 10
3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties
Shuai C., Wang B., Yang Y., Peng S., Gao C.
Q1 Composites Part B: Engineering 2019 цитирований: 64
Microstructural and small-scale characterization of additive manufactured AlSi10Mg alloy
Alghamdi F., Haghshenas M.
Q2 SN Applied Sciences 2019 цитирований: 13
Spark plasma sintered Al-based composites reinforced with BN nanosheets exfoliated under ball milling in ethylene glycol
Yusupov K.U., Corthay S., Bondarev A.V., Kovalskii A.M., Matveev A.T., Arkhipov D., Golberg D.V., Shtansky D.V.
Q1 Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing 2019 цитирований: 14
Selective Laser Melting to Manufacture “In Situ” Metal Matrix Composites: A Review
Dadbakhsh S., Mertens R., Hao L., Van Humbeeck J., Kruth J.
Q1 Advanced Engineering Materials 2019 цитирований: 64
Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites
Yu C., Zhang J., Tian W., Fan X., Yao Y.
Q1 RSC Advances 2018 цитирований: 59
Open Access
Open access
Solidification pattern, microstructure and texture development in Laser Powder Bed Fusion (LPBF) of Al10SiMg alloy
Qin H., Fallah V., Dong Q., Brochu M., Daymond M.R., Gallerneault M.
Q1 Materials Characterization 2018 цитирований: 25
Cold Sprayed Additive Manufacturing of SiC/Al Metal Matrix Composite: Synthesis, Microstructure, Heat Treatment and Tensile Properties
Gyansah L., Tariq N.H., Tang J.R., Qiu X., Gao J.Z., Wang J.Q., Xiong T.Y.
Q3 Materials Science Forum 2018 цитирований: 5
Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T., Hui D.
Q1 Composites Part B: Engineering 2018 цитирований: 2129
Selective laser melting of AlSi10Mg alloy: influence of heat treatment condition on mechanical properties and microstructure
Iturrioz A., Gil E., Petite M.M., Garciandia F., Mancisidor A.M., San Sebastian M.
Q2 Welding in the World, Le Soudage Dans Le Monde 2018 цитирований: 32
Direct metal deposition of TiB 2 /AlSi10Mg composites using satellited powders
Tan H., Hao D., Al-Hamdani K., Zhang F., Xu Z., Clare A.T.
Q2 Materials Letters 2018 цитирований: 30
Al-based composites reinforced with AlB2, AlN and BN phases: Experimental and theoretical studies
Steinman A.E., Corthay S., Firestein K.L., Kvashnin D.G., Kovalskii A.M., Matveev A.T., Sorokin P.B., Golberg D.V., Shtansky D.V.
Q1 Materials and Design 2018 цитирований: 51
Open Access
Open access
Wetting Behavior and Reactivity of Molten Silicon with h-BN Substrate at Ultrahigh Temperatures up to 1750 °C
Polkowski W., Sobczak N., Nowak R., Kudyba A., Bruzda G., Polkowska A., Homa M., Turalska P., Tangstad M., Safarian J., Moosavi-Khoonsari E., Datas A.
Q2 Journal of Materials Engineering and Performance 2017 цитирований: 13
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Konopatsky A.S. и др. Microstructure evolution during AlSi10Mg molten alloy/BN microflake interactions in metal matrix composites obtained through 3D printing // Journal of Alloys and Compounds. 2021. Т. 859. С. 157765.
RIS |
Цитировать

TY - JOUR

DO - 10.1016/j.jallcom.2020.157765

UR - http://dx.doi.org/10.1016/j.jallcom.2020.157765

TI - Microstructure evolution during AlSi10Mg molten alloy/BN microflake interactions in metal matrix composites obtained through 3D printing

T2 - Journal of Alloys and Compounds

AU - Konopatsky, Anton S.

AU - Kvashnin, Dmitry G.

AU - Corthay, Shakti

AU - Boyarintsev, Ivan

AU - Firestein, Konstantin L.

AU - Orekhov, Anton

AU - Arkharova, Natalya

AU - Golberg, Dmitry V.

AU - Shtansky, Dmitry V.

PY - 2021

DA - 2021/04

PB - Elsevier BV

SP - 157765

VL - 859

SN - 0925-8388

ER -

BibTex |
Цитировать

@article{Konopatsky_2021,

doi = {10.1016/j.jallcom.2020.157765},

url = {https://doi.org/10.1016%2Fj.jallcom.2020.157765},

year = 2021,

month = {apr},

publisher = {Elsevier {BV}},

volume = {859},

pages = {157765},

author = {Anton S. Konopatsky and Dmitry G. Kvashnin and Shakti Corthay and Ivan Boyarintsev and Konstantin L. Firestein and Anton Orekhov and Natalya Arkharova and Dmitry V. Golberg and Dmitry V. Shtansky},

title = {Microstructure evolution during {AlSi}10Mg molten alloy/{BN} microflake interactions in metal matrix composites obtained through 3D printing},

journal = {Journal of Alloys and Compounds}

}

MLA
Цитировать
Konopatsky, Anton S. et al. “Microstructure Evolution During AlSi10Mg Molten alloy/BN Microflake Interactions in Metal Matrix Composites Obtained through 3D Printing.” Journal of Alloys and Compounds 859 (2021): 157765. Crossref. Web.