Open Access
Open access
Procedia Computer Science, издание 156, номера страниц: 357-366

Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression

Тип публикацииJournal Article
Дата публикации2019-09-26
Elsevier
Elsevier
ЖурналProcedia Computer Science
Квартиль SCImago
Квартиль WOS
Impact factor
ISSN18770509
General Medicine
Краткое описание
The various real-world tasks of environmental management make it necessary to obtain the hindcasts and forecasts of natural events (wind, ocean waves and currents, sea ice, etc.) using data-driven techniques for metocean processes simulation. The models can be fitted to specific fragments of the non-stationary multivariate time series individually to reproduce metocean environment with desired characteristics. In the paper, the approach based on the LASSO regularised regression is proposed for the environmental time series clustering. It allows the identify the situations with specific interaction between variables, that can be interpreted by the values regression coefficients. The weather generator was used to produce both synthetic time series similar to the general dataset and the identified clusters. The obtained results can be used to increase the quality of the computationally lightweight environmental models’ identification and interpretation.
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Deeva I., Nikitin N. O., Kaluyzhnaya A. V. Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression // Procedia Computer Science. 2019. Т. 156. С. 357–366.
RIS |
Цитировать

TY - JOUR

DO - 10.1016/j.procs.2019.08.212

UR - http://dx.doi.org/10.1016/j.procs.2019.08.212

TI - Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression

T2 - Procedia Computer Science

AU - Deeva, Irina

AU - Nikitin, Nikolay O.

AU - Kaluyzhnaya, Anna V.

PY - 2019

PB - Elsevier BV

SP - 357-366

VL - 156

SN - 1877-0509

ER -

BibTex |
Цитировать

@article{Deeva_2019,

doi = {10.1016/j.procs.2019.08.212},

url = {https://doi.org/10.1016%2Fj.procs.2019.08.212},

year = 2019,

publisher = {Elsevier {BV}},

volume = {156},

pages = {357--366},

author = {Irina Deeva and Nikolay O. Nikitin and Anna V. Kaluyzhnaya},

title = {Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression},

journal = {Procedia Computer Science}

}

MLA
Цитировать
Deeva, Irina, et al. “Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression.” Procedia Computer Science, vol. 156, 2019, pp. 357–66. Crossref, https://doi.org/10.1016/j.procs.2019.08.212.