Deep neural network model for highly accurate prediction of BODIPYs absorption

Ksenofontov A.A., Lukanov M.M., Bocharov P.S., Berezin M.B., Tetko I.V.
Тип документаJournal Article
Дата публикации2022-02-24
Название журналаSpectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
ИздательElsevier
Квартиль по SCImagoQ2
Квартиль по Web of ScienceQ1
Импакт-фактор 20214.83
ISSN13861425
Spectroscopy
Analytical Chemistry
Atomic and Molecular Physics, and Optics
Instrumentation
Пристатейные ссылки: 38
Цитируется в публикациях: 5
Accelerated discovery of boron-dipyrromethene sensitizer for solar cells by integrating data mining and first principle
Lu T., Li M., Yao Z., Lu W.
Q1 Journal of Materiomics 2021 цитирований: 4
Open Access
Open access
Synthesis and optical properties of 1-ethyl-indol-3-yl-substituted aza-BODIPY dyes at the 1,7-positions
Loaeza L., Corona-Sánchez R., Castro G., Romero-Ávila M., Santillan R., Maraval V., Chauvin R., Farfán N.
Q2 Tetrahedron 2021 цитирований: 3
Deep Learning Optical Spectroscopy Based on Experimental Database: Potential Applications to Molecular Design
Joung J.F., Han M., Hwang J., Jeong M., Choi D.H., Park S.
JACS Au 2021 цитирований: 10
Machine Learning Enables Highly Accurate Predictions of Photophysical Properties of Organic Fluorescent Materials: Emission Wavelengths and Quantum Yields
Ju C., Bai H., Li B., Liu R.
Q1 Journal of Chemical Information and Modeling 2021 цитирований: 15
QSAR without borders
Muratov E.N., Bajorath J., Sheridan R.P., Tetko I.V., Filimonov D., Poroikov V., Oprea T.I., Baskin I.I., Varnek A., Roitberg A., Isayev O., Curtalolo S., Fourches D., Cohen Y., Aspuru-Guzik A., et. al.
Q1 Chemical Society Reviews 2020 цитирований: 149
Predicting the emission wavelength of organic molecules using a combinatorial QSAR and machine learning approach
Ye Z., Huang I.-., Chan Y., Li Z., Liao C., Tsai H., Hsieh M., Chang C., Tsai M.
Q1 RSC Advances 2020 цитирований: 9
Open Access
Open access
The influence of alkylation on the photophysical properties of BODIPYs and their labeling in blood plasma proteins
Antina L.A., Ksenofontov A.A., Kalyagin A.A., Bocharov P.S., Kharitonova N.V., Kazak A.V., Antina E.V., Berezin M.B.
Q1 Journal of Molecular Liquids 2020 цитирований: 7
Open Access
Open access
Transformer-CNN: Swiss knife for QSAR modeling and interpretation
Karpov P., Godin G., Tetko I.V.
Q1 Journal of Cheminformatics 2020 цитирований: 32
Open Access
Open access
Toward Prediction of Nonradiative Decay Pathways in Organic Compounds II: Two Internal Conversion Channels in BODIPYs
Lin Z., Kohn A.W., Van Voorhis T.
Q1 Journal of Physical Chemistry C 2020 цитирований: 29
Analyzing Learned Molecular Representations for Property Prediction
Yang K., Swanson K., Jin W., Coley C., Eiden P., Gao H., Guzman-Perez A., Hopper T., Kelley B., Mathea M., Palmer A., Settels V., Jaakkola T., Jensen K., Barzilay R.
Q1 Journal of Chemical Information and Modeling 2019 цитирований: 260
Luminescent properties of new 2,2-, 2,3- and 3,3-CH2-bis(BODIPY)s dyes: Structural and solvation effects
Antina L.A., Ksenofontov A.A., Kalyagin A.A., Antina E.V., Berezin M.B., Khodov I.A.
Q1 Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 2019 цитирований: 15
Effect of solvent nature on spectral properties of blue-emitting meso-propargylamino-BODIPY
Guseva G.B., Ksenofontov A.A., Antina E.V., Berezin M.B., Vyugin A.I.
Q1 Journal of Molecular Liquids 2019 цитирований: 8
Open Access
Open access
Augmentation Is What You Need!
Tetko I.V., Karpov P., Bruno E., Kimber T.B., Godin G.
Q2 Lecture Notes in Computer Science 2019 цитирований: 15
Open Access
Open access
Recent advances in the application of BODIPY in bioimaging and chemosensing
Kaur P., Singh K.
Q1 Journal of Materials Chemistry C 2019 цитирований: 79
Comparative Study of Multitask Toxicity Modeling on a Broad Chemical Space
Sosnin S., Karlov D., Tetko I.V., Fedorov M.V.
Q1 Journal of Chemical Information and Modeling 2018 цитирований: 37
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Ksenofontov A. A. и др. Deep neural network model for highly accurate prediction of BODIPYs absorption // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022. Т. 267. С. 120577.
RIS |
Цитировать

TY - JOUR

DO - 10.1016/j.saa.2021.120577

UR - http://dx.doi.org/10.1016/j.saa.2021.120577

TI - Deep neural network model for highly accurate prediction of BODIPYs absorption

T2 - Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

AU - Ksenofontov, Alexander A.

AU - Lukanov, Michail M.

AU - Bocharov, Pavel S.

AU - Berezin, Michail B.

AU - Tetko, Igor V.

PY - 2022

DA - 2022/02

PB - Elsevier BV

SP - 120577

VL - 267

SN - 1386-1425

ER -

BibTex |
Цитировать

@article{Ksenofontov_2022,

doi = {10.1016/j.saa.2021.120577},

url = {https://doi.org/10.1016%2Fj.saa.2021.120577},

year = 2022,

month = {feb},

publisher = {Elsevier {BV}},

volume = {267},

pages = {120577},

author = {Alexander A. Ksenofontov and Michail M. Lukanov and Pavel S. Bocharov and Michail B. Berezin and Igor V. Tetko},

title = {Deep neural network model for highly accurate prediction of {BODIPYs} absorption},

journal = {Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy}

}

MLA
Цитировать
Ksenofontov, Alexander A., et al. “Deep Neural Network Model for Highly Accurate Prediction of BODIPYs Absorption.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 267, Feb. 2022, p. 120577. Crossref, https://doi.org/10.1016/j.saa.2021.120577.