Can machine learning methods accurately predict the molar absorption coefficient of different classes of dyes?

Ksenofontov A.A., Lukanov M.M., Bocharov P.S.
Тип документаJournal Article
Дата публикации2022-07-15
Название журналаSpectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
ИздательElsevier
Квартиль по SCImagoQ2
Квартиль по Web of ScienceQ1
Импакт-фактор 20214.83
ISSN13861425
Spectroscopy
Analytical Chemistry
Atomic and Molecular Physics, and Optics
Instrumentation
Пристатейные ссылки: 39
Deep neural network model for highly accurate prediction of BODIPYs absorption
Ksenofontov A.A., Lukanov M.M., Bocharov P.S., Berezin M.B., Tetko I.V.
Q1 Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 2022 цитирований: 5
Water-Soluble BODIPY-Based fluorescent probe for BSA and HSA detection
Ksenofontov A.A., Bocharov P.S., Ksenofontova K.V., Antina E.V.
Q1 Journal of Molecular Liquids 2022 цитирований: 4
Open Access
Open access
More Is Not Always Better: Local Models Provide Accurate Predictions of Spectral Properties of Porphyrins
Rusanov A.I., Dmitrieva O.A., Mamardashvili N.Z., Tetko I.V.
Q1 International Journal of Molecular Sciences 2022 цитирований: 2
Open Access
Open access
NIR luminescence from sandwich-type ytterbium(III) complexes constructed from β-diketone and bis-salicylaldehyde derivatives
Xie B., Zhou Y., Sun O., Yan P., Gao T., Li H.
Q2 Journal of Luminescence 2021 цитирований: 1
Anti-infective dyes in the time of COVID
Wainwright M.
Q1 Dyes and Pigments 2021 цитирований: 3
A turn-on upconversion fluorescence sensor for acrylamide in potato chips based on fluorescence resonance energy transfer and thiol-ene Michael addition.
Rong Y., Ali S., Ouyang Q., Wang L., Wang B., Chen Q.
Q1 Food Chemistry 2021 цитирований: 20
Open Access
Open access
Radiative lifetime of a BODIPY dye as calculated by TDDFT and EOM-CCSD methods: solvent and vibronic effects.
Sia R.C., Arellano-Reyes R.A., Keyes T.E., Guthmuller J.
Q1 Physical Chemistry Chemical Physics 2021 цитирований: 2
Excited state dynamics of BODIPY-based acceptor-donor-acceptor systems: a combined experimental and computational study.
Wei Z., Sharma S., Philip A.M., Sengupta S., Grozema F.C.
Q1 Physical Chemistry Chemical Physics 2021 цитирований: 2
Deep Learning Optical Spectroscopy Based on Experimental Database: Potential Applications to Molecular Design
Joung J.F., Han M., Hwang J., Jeong M., Choi D.H., Park S.
JACS Au 2021 цитирований: 10
Machine Learning Enables Highly Accurate Predictions of Photophysical Properties of Organic Fluorescent Materials: Emission Wavelengths and Quantum Yields
Ju C., Bai H., Li B., Liu R.
Q1 Journal of Chemical Information and Modeling 2021 цитирований: 15
Design of novel anthracene-based fluorescence sensor for sensitive and selective determination of iron in real samples
Tümay S.O., Haddad Irani-nezhad M., Khataee A.
Q2 Journal of Photochemistry and Photobiology A: Chemistry 2020 цитирований: 27
Prediction of Molecular Electronic Transitions Using Random Forests
Kang B., Seok C., Lee J.
Q1 Journal of Chemical Information and Modeling 2020 цитирований: 13
Chemiluminescence for bioimaging and therapeutics: recent advances and challenges.
Yang M., Huang J., Fan J., Du J., Pu K., Peng X.
Q1 Chemical Society Reviews 2020 цитирований: 100
Predicting the emission wavelength of organic molecules using a combinatorial QSAR and machine learning approach
Ye Z., Huang I.-., Chan Y., Li Z., Liao C., Tsai H., Hsieh M., Chang C., Tsai M.
Q1 RSC Advances 2020 цитирований: 9
Open Access
Open access
Effect of meso-phenyl substitution on spectral properties, photo- and thermal stability of boron (III) and zinc (II) dipyrrometenates
Berezin M.B., Antina E.V., Guseva G.B., Kritskaya A.Y., Semeikin A.S.
Q2 Inorganic Chemistry Communication 2020 цитирований: 9
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Ksenofontov A. A., Lukanov M. M., Bocharov P. S. Can machine learning methods accurately predict the molar absorption coefficient of different classes of dyes? // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022. Т. 279. С. 121442.
RIS |
Цитировать

TY - JOUR

DO - 10.1016/j.saa.2022.121442

UR - http://dx.doi.org/10.1016/j.saa.2022.121442

TI - Can machine learning methods accurately predict the molar absorption coefficient of different classes of dyes?

T2 - Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

AU - Ksenofontov, Alexander A.

AU - Lukanov, Michail M.

AU - Bocharov, Pavel S.

PY - 2022

DA - 2022/10

PB - Elsevier BV

SP - 121442

VL - 279

SN - 1386-1425

ER -

BibTex |
Цитировать

@article{Ksenofontov_2022,

doi = {10.1016/j.saa.2022.121442},

url = {https://doi.org/10.1016%2Fj.saa.2022.121442},

year = 2022,

month = {oct},

publisher = {Elsevier {BV}},

volume = {279},

pages = {121442},

author = {Alexander A. Ksenofontov and Michail M. Lukanov and Pavel S. Bocharov},

title = {Can machine learning methods accurately predict the molar absorption coefficient of different classes of dyes?},

journal = {Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy}

}

MLA
Цитировать
Ksenofontov, Alexander A., et al. “Can Machine Learning Methods Accurately Predict the Molar Absorption Coefficient of Different Classes of Dyes?” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 279, Oct. 2022, p. 121442. Crossref, https://doi.org/10.1016/j.saa.2022.121442.