Open Access
Open access
Scientific Reports, volume 10, issue 1, publication number 1592

From LaH10 to room–temperature superconductors

Kostrzewa M. 1
Szczęśniak K M 2
Durajski A. P. 3
Szczȩśniak R. 1, 3
1
 
Institute of Physics, Jan Długosz University in Częstochowa, Częstochowa, Poland
2
 
Faculty of Chemistry, University of Warsaw, Warsaw, Poland
3
 
Institute of Physics, Częstochowa University of Technology, Częstochowa, Poland
Publication typeJournal Article
Publication date2020-01-31
Quartile SCImago
Q1
Quartile WOS
Q2
Impact factor4.6
ISSN20452322
Multidisciplinary
Abstract
Thermodynamic parameters of the LaH10 superconductor were an object of our interest. LaH10 is characterised by the highest experimentally observed value of the critical temperature: TCa=215\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}={\bf{215}}$$\end{document} K (pa = 150 GPa) and TCb=260\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{b}={\bf{260}}$$\end{document} K (pb = 190 GPa). It belongs to the group of superconductors with a strong electron-phonon coupling (λa ~ 2.2 and λb ~ 2.8). We calculated the thermodynamic parameters of this superconductor and found that the values of the order parameter, the thermodynamic critical field, and the specific heat differ significantly from the values predicted by the conventional BCS theory. Due to the specific structure of the Eliashberg function for the hydrogenated compounds, the qualitative analysis suggests that the superconductors of the LaδX1−δH10-type (LaXH-type) structure, where X ∈ {Sc, Y}, would exhibit significantly higher critical temperature than TC obtained for LaH10. In the case of LaScH we came to the following assessments: TCa∈220,267\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}\in \left\langle {\bf{220}},{\bf{267}}\right\rangle $$\end{document} K and TCb∈263,294\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{b}}}\in \left\langle {\bf{263}},{\bf{294}}\right\rangle $$\end{document} K, while the results for LaYH were: TCa∈218,247\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}\in \left\langle {\bf{218}},{\bf{247}}\right\rangle $$\end{document} K and TCb∈261,274\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{b}}}\in \left\langle {\bf{261}},{\bf{274}}\right\rangle $$\end{document} K.

Citations by journals

1
2
3
4
5
6
Physical Review B
Physical Review B, 6, 28.57%
Physical Review B
6 publications, 28.57%
Journal of Applied Physics
Journal of Applied Physics, 3, 14.29%
Journal of Applied Physics
3 publications, 14.29%
Symmetry
Symmetry, 2, 9.52%
Symmetry
2 publications, 9.52%
Materials Today
Materials Today, 1, 4.76%
Materials Today
1 publication, 4.76%
Matter and Radiation at Extremes
Matter and Radiation at Extremes, 1, 4.76%
Matter and Radiation at Extremes
1 publication, 4.76%
Applied Sciences (Switzerland)
Applied Sciences (Switzerland), 1, 4.76%
Applied Sciences (Switzerland)
1 publication, 4.76%
Metals
Metals, 1, 4.76%
Metals
1 publication, 4.76%
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism, 1, 4.76%
Journal of Superconductivity and Novel Magnetism
1 publication, 4.76%
Solid State Communications
Solid State Communications, 1, 4.76%
Solid State Communications
1 publication, 4.76%
Journal of Physics Communications
Journal of Physics Communications, 1, 4.76%
Journal of Physics Communications
1 publication, 4.76%
Superconductor Science and Technology
Superconductor Science and Technology, 1, 4.76%
Superconductor Science and Technology
1 publication, 4.76%
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science, 1, 4.76%
Wiley Interdisciplinary Reviews: Computational Molecular Science
1 publication, 4.76%
Physical Review Research
Physical Review Research, 1, 4.76%
Physical Review Research
1 publication, 4.76%
1
2
3
4
5
6

Citations by publishers

1
2
3
4
5
6
7
American Physical Society (APS)
American Physical Society (APS), 7, 33.33%
American Physical Society (APS)
7 publications, 33.33%
American Institute of Physics (AIP)
American Institute of Physics (AIP), 4, 19.05%
American Institute of Physics (AIP)
4 publications, 19.05%
Multidisciplinary Digital Publishing Institute (MDPI)
Multidisciplinary Digital Publishing Institute (MDPI), 4, 19.05%
Multidisciplinary Digital Publishing Institute (MDPI)
4 publications, 19.05%
Elsevier
Elsevier, 2, 9.52%
Elsevier
2 publications, 9.52%
IOP Publishing
IOP Publishing, 2, 9.52%
IOP Publishing
2 publications, 9.52%
Springer Nature
Springer Nature, 1, 4.76%
Springer Nature
1 publication, 4.76%
Wiley
Wiley, 1, 4.76%
Wiley
1 publication, 4.76%
1
2
3
4
5
6
7
  • We do not take into account publications that without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Kostrzewa M. et al. From LaH10 to room–temperature superconductors // Scientific Reports. 2020. Vol. 10. No. 1. 1592
GOST all authors (up to 50) Copy
Kostrzewa M., Szczęśniak K. M., Durajski A. P., Szczȩśniak R. From LaH10 to room–temperature superconductors // Scientific Reports. 2020. Vol. 10. No. 1. 1592
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41598-020-58065-9
UR - https://doi.org/10.1038%2Fs41598-020-58065-9
TI - From LaH10 to room–temperature superconductors
T2 - Scientific Reports
AU - Kostrzewa, M.
AU - Szczęśniak, K M
AU - Durajski, A. P.
AU - Szczȩśniak, R.
PY - 2020
DA - 2020/01/31 00:00:00
PB - Springer Nature
IS - 1
VL - 10
PMID - 32005852
SN - 2045-2322
ER -
BibTex
Cite this
BibTex Copy
@article{2020_Kostrzewa
author = {M. Kostrzewa and K M Szczęśniak and A. P. Durajski and R. Szczȩśniak},
title = {From LaH10 to room–temperature superconductors},
journal = {Scientific Reports},
year = {2020},
volume = {10},
publisher = {Springer Nature},
month = {jan},
url = {https://doi.org/10.1038%2Fs41598-020-58065-9},
number = {1},
doi = {10.1038/s41598-020-58065-9}
}
Found error?