Open Access
Open access

Polymer-quantum dot composite hybrid solar cells with a bi-continuous network morphology using the block copolymer poly(3-hexylthiophene)-: B -polystyrene or its blend with poly(3-hexylthiophene) as a donor

Nguyen D., Sharma S., Chen S., Komarov P.V., Ivanov V.A., Khokhlov A.R.
Тип документаJournal Article
Дата публикации2021-01-01
Название журналаMaterials Advances
ИздательThe Royal Society of Chemistry
Квартиль по SCImagoQ2
Квартиль по Web of Science
Импакт-фактор 2021
ISSN26335409
Chemistry (miscellaneous)
General Materials Science
Краткое описание
The bi-continuous network morphology in the hybrid quantum dot solar cell is formed using the block copolymer P3HT-b-PS since the PS block is more compatible with the quantum dots.
Пристатейные ссылки: 36
Цитируется в публикациях: 4
Toward printable solar cells based on PbX colloidal quantum dot inks.
Liu Y., Shi G., Liu Z., Ma W.
Q1 Nanoscale Horizons 2021 цитирований: 10
Monolayer Perovskite Bridges Enable Strong Quantum Dot Coupling for Efficient Solar Cells
Sun B., Johnston A., Xu C., Wei M., Huang Z., Jiang Z., Zhou H., Gao Y., Dong Y., Ouellette O., Zheng X., Liu J., Choi M., Gao Y., Baek S., et. al.
Q1 Joule 2020 цитирований: 63
High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer
Ji K., Yuan J., Li F., Shi Y., Ling X., Zhang X., Zhang Y., Lu H., Yuan J., Ma W.
Q1 Journal of Materials Chemistry A 2020 цитирований: 39
Mesoscale Simulations on Morphology Design in Conjugated Polymers and Inorganic Nanoparticles Composite for Bulk Heterojunction Solar Cells
Komarov P.V., Baburkin P.O., Ivanov V.A., Li Y., Chen S., Khokhlov A.R.
Q1 Solar RRL 2020 цитирований: 1
Controlling the morphology of a hybrid polymer/nanoparticle active layer of solar cells: Mesoscopic simulation
Komarov P., Baburkin P., Ivanov V., Chen S., Khokhlov A.
Q1 Molecular Systems Design and Engineering 2019 цитирований: 3
A hydro/oxo-phobic top hole-selective layer for efficient and stable colloidal quantum dot solar cells
Baek S., Lee S., Song J.H., Kim C., Ha Y., Shin H., Kim H., Jeong S., Lee J.
Q1 Energy and Environmental Science 2018 цитирований: 26
Double-Well Colloidal Nanocrystals Featuring Two-Color Photoluminescence
Razgoniaeva N., Yang M., Colegrove C., Kholmicheva N., Moroz P., Eckard H., Vore A., Zamkov M.
Q1 Chemistry of Materials 2017 цитирований: 16
Photovoltaic Devices Based on Colloidal PbX Quantum Dots: Progress and Prospects
Liu Z., Yuan J., Hawks S.A., Shi G., Lee S., Ma W.
Q1 Solar RRL 2017 цитирований: 28
Influence of post-synthesis annealing on PbS quantum dot solar cells
Wang H., Yang S., Wang Y., Xu J., Huang Y., Li W., He B., Muhammad S., Jiang Y., Tang Y., Zou B.
Q1 Organic Electronics 2017 цитирований: 16
The role of surface passivation for efficient and photostable PbS quantum dot solar cells
Cao Y., Stavrinadis A., Lasanta T., So D., Konstantatos G.
Q1 Nature Energy 2016 цитирований: 214
Colloidal quantum dot solids for solution-processed solar cells
Yuan M., Liu M., Sargent E.H.
Q1 Nature Energy 2016 цитирований: 204
Highly efficient quantum dot near-infrared light-emitting diodes
Gong X., Yang Z., Walters G., Comin R., Ning Z., Beauregard E., Adinolfi V., Voznyy O., Sargent E.H.
Q1 Nature Photonics 2016 цитирований: 278
High-efficiency aqueous-solution-processed hybrid solar cells based on P3HT dots and CdTe nanocrystals.
Yao S., Chen Z., Li F., Xu B., Song J., Yan L., Jin G., Wen S., Wang C., Yang B., Tian W.
Q1 ACS applied materials & interfaces 2015 цитирований: 25
High mobility and low density of trap states in dual-solid-gated PbS nanocrystal field-effect transistors.
Nugraha M.I., Häusermann R., Bisri S.Z., Matsui H., Sytnyk M., Heiss W., Takeya J., Loi M.A.
Q1 Advanced Materials 2015 цитирований: 50
High-efficiency polymer–PbS hybrid solar cells via molecular engineering
Yuan J., Gallagher A., Liu Z., Sun Y., Ma W.
Q1 Journal of Materials Chemistry A 2015 цитирований: 42
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Nguyen D.-T. и др. Polymer–quantum dot composite hybrid solar cells with a bi-continuous network morphology using the block copolymer poly(3-hexylthiophene)-b-polystyrene or its blend with poly(3-hexylthiophene) as a donor // Materials Advances. 2021. Т. 2. № 3. С. 1016–1023.
RIS |
Цитировать

TY - JOUR

DO - 10.1039/d0ma00770f

UR - http://dx.doi.org/10.1039/d0ma00770f

TI - Polymer–quantum dot composite hybrid solar cells with a bi-continuous network morphology using the block copolymer poly(3-hexylthiophene)-b-polystyrene or its blend with poly(3-hexylthiophene) as a donor

T2 - Materials Advances

AU - Nguyen, Dang-Trung

AU - Sharma, Sunil

AU - Chen, Show-An

AU - Komarov, Pavel V.

AU - Ivanov, Viktor A.

AU - Khokhlov, Alexei R.

PY - 2021

PB - Royal Society of Chemistry (RSC)

SP - 1016-1023

IS - 3

VL - 2

SN - 2633-5409

ER -

BibTex |
Цитировать

@article{Nguyen_2021,

doi = {10.1039/d0ma00770f},

url = {https://doi.org/10.1039%2Fd0ma00770f},

year = 2021,

publisher = {Royal Society of Chemistry ({RSC})},

volume = {2},

number = {3},

pages = {1016--1023},

author = {Dang-Trung Nguyen and Sunil Sharma and Show-An Chen and Pavel V. Komarov and Viktor A. Ivanov and Alexei R. Khokhlov},

title = {Polymer{\textendash}quantum dot composite hybrid solar cells with a bi-continuous network morphology using the block copolymer poly(3-hexylthiophene)-b-polystyrene or its blend with poly(3-hexylthiophene) as a donor},

journal = {Materials Advances}

}

MLA
Цитировать
Nguyen, Dang-Trung, et al. “Polymer–quantum Dot Composite Hybrid Solar Cells with a Bi-Continuous Network Morphology Using the Block Copolymer Poly(3-Hexylthiophene)-b-Polystyrene or Its Blend with Poly(3-Hexylthiophene) as a Donor.” Materials Advances, vol. 2, no. 3, 2021, pp. 1016–23. Crossref, https://doi.org/10.1039/d0ma00770f.