Open Access
Open access

Williams-Beuren Syndrome Related Methyltransferase WBSCR27: From Structure to Possible Function

Mariasina S.S., Chang C., Navalayeu T.L., Chugunova A.A., Efimov S.V., Zgoda V.G., Ivlev V.A., Dontsova O.A., Sergiev P.V., Polshakov V.I.
Тип документаJournal Article
Дата публикации2022-06-15
Название журналаFrontiers in Molecular Biosciences
ИздательFrontiers Media S.A.
Квартиль по SCImagoQ1
Квартиль по Web of ScienceQ1
Импакт-фактор 20216.11
ISSN2296889X
Biochemistry
Molecular Biology
Biochemistry, Genetics and Molecular Biology (miscellaneous)
Краткое описание
Williams-Beuren syndrome (WBS) is a genetic disorder associated with the hemizygous deletion of several genes in chromosome 7, encoding 26 proteins. Malfunction of these proteins induce multisystemic failure in an organism. While biological functions of most proteins are more or less established, the one of methyltransferase WBSCR27 remains elusive. To find the substrate of methylation catalyzed by WBSCR27 we constructed mouse cell lines with a Wbscr27 gene knockout and studied the obtained cells using several molecular biology and mass spectrometry techniques. We attempted to pinpoint the methylation target among the RNAs and proteins, but in all cases neither a direct substrate has been identified nor the protein partners have been detected. To reveal the nature of the putative methylation substrate we determined the solution structure and studied the conformational dynamic properties of WBSCR27 in apo state and in complex with S-adenosyl-L-homocysteine (SAH). The protein core was found to form a canonical Rossman fold common for Class I methyltransferases. N-terminus of the protein and the β6–β7 loop were disordered in apo-form, but binding of SAH induced the transition of these fragments to a well-formed substrate binding site. Analyzing the structure of this binding site allows us to suggest potential substrates of WBSCR27 methylation to be probed in further research.
Пристатейные ссылки: 62
OUP accepted manuscript
Yang W., Xiong Q., Ge J., Li H., Zhu W., Nie Y., Lin X., Lv D., Li J., Lin H., Liu R.
Q1 Nucleic Acids Research 2021 цитирований: 3
Open Access
Open access
Multi-omics integration of methyltransferase-like protein family reveals clinical outcomes and functional signatures in human cancer
Campeanu I.J., Jiang Y., Liu L., Pilecki M., Najor A., Cobani E., Manning M., Zhang X.M., Yang Z.
Q1 Scientific Reports 2021 цитирований: 4
Open Access
Open access
Williams–Beuren syndrome-related methyltransferase WBSCR27: cofactor binding and cleavage
Mariasina S.S., Chang C., Petrova O.A., Efimov S.V., Klochkov V.V., Kechko O.I., Mitkevich V.A., Sergiev P.V., Dontsova O.A., Polshakov V.I.
Q1 FEBS Journal 2020 цитирований: 3
METTL15 interacts with the assembly intermediate of murine mitochondrial small ribosomal subunit to form m4C840 12S rRNA residue
Laptev I., Shvetsova E., Levitskii S., Serebryakova M., Rubtsova M., Zgoda V., Bogdanov A., Kamenski P., Sergiev P., Dontsova O.
Q1 Nucleic Acids Research 2020 цитирований: 13
Open Access
Open access
RsmG forms stable complexes with premature small subunit rRNA during bacterial ribosome biogenesis
Abedeera S.M., Hawkins C.M., Abeysirigunawardena S.C.
Q1 RSC Advances 2020 цитирований: 2
Open Access
Open access
Histone lysine methyltransferases in biology and disease
Husmann D., Gozani O.
Q1 Nature Structural and Molecular Biology 2019 цитирований: 121
The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112
van Tran N., Ernst F.G., Hawley B.R., Zorbas C., Ulryck N., Hackert P., Bohnsack K.E., Bohnsack M.T., Jaffrey S.R., Graille M., Lafontaine D.L.
Q1 Nucleic Acids Research 2019 цитирований: 96
Open Access
Open access
KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells
Metzger E., Wang S., Urban S., Willmann D., Schmidt A., Offermann A., Allen A., Sum M., Obier N., Cottard F., Ulferts S., Preca B., Hermann B., Maurer J., Greschik H., et. al.
Q1 Nature Structural and Molecular Biology 2019 цитирований: 34
Salvianolic acid B plays an anti-obesity role in high fat diet-induced obese mice by regulating the expression of mRNA, circRNA, and lncRNA
An T., Zhang J., Lv B., Liu Y., Huang J., Lian J., Wu Y., Gao S., Jiang G.
Q1 PeerJ 2019 цитирований: 15
Open Access
Open access
NMR screening and studies of target - Ligand interactions
Polshakov V.I., Batuev E.A., Mantsyzov A.B.
Q1 Russian Chemical Reviews 2019 цитирований: 7
LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism
Chugunova A., Loseva E., Mazin P., Mitina A., Navalayeu T., Bilan D., Vishnyakova P., Marey M., Golovina A., Serebryakova M., Pletnev P., Rubtsova M., Mair W., Vanyushkina A., Khaitovich P., et. al.
Q1 Proceedings of the National Academy of Sciences of the United States of America 2019 цитирований: 57
Open Access
Open access
NMR assignments of the WBSCR27 protein related to Williams-Beuren syndrome
Mariasina S.S., Petrova O.A., Osterman I.A., Sergeeva O.V., Efimov S.V., Klochkov V.V., Sergiev P.V., Dontsova O.A., Huang T., Chang C., Polshakov V.I.
Q4 Biomolecular NMR Assignments 2018 цитирований: 2
Activity of Genes with Functions in Human Williams–Beuren Syndrome Is Impacted by Mobile Element Insertions in the Gray Wolf Genome
vonHoldt B.M., Ji S.S., Aardema M.L., Stahler D.R., Udell M.A., Sinsheimer J.S.
Q1 Genome Biology and Evolution 2018 цитирований: 13
Open Access
Open access
SearchGUI: A Highly Adaptable Common Interface for Proteomics Search and de Novo Engines.
Barsnes H., Vaudel M.
Q1 Journal of Proteome Research 2018 цитирований: 108
Structural and evolutionary insights into ribosomal RNA methylation
Sergiev P.V., Aleksashin N.A., Chugunova A.A., Polikanov Y.S., Dontsova O.A.
Q1 Nature Chemical Biology 2018 цитирований: 92
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Mariasina S. S. и др. Williams-Beuren Syndrome Related Methyltransferase WBSCR27: From Structure to Possible Function // Frontiers in Molecular Biosciences. 2022. Т. 9.
RIS |
Цитировать

TY - JOUR

DO - 10.3389/fmolb.2022.865743

UR - http://dx.doi.org/10.3389/fmolb.2022.865743

TI - Williams-Beuren Syndrome Related Methyltransferase WBSCR27: From Structure to Possible Function

T2 - Frontiers in Molecular Biosciences

AU - Mariasina, Sofia S.

AU - Chang, Chi-Fon

AU - Navalayeu, Tsimafei L.

AU - Chugunova, Anastasia A.

AU - Efimov, Sergey V.

AU - Zgoda, Viktor G.

AU - Ivlev, Vasily A.

AU - Dontsova, Olga A.

AU - Sergiev, Petr V.

AU - Polshakov, Vladimir I.

PY - 2022

DA - 2022/06/15

PB - Frontiers Media SA

VL - 9

SN - 2296-889X

ER -

BibTex |
Цитировать

@article{Mariasina_2022,

doi = {10.3389/fmolb.2022.865743},

url = {https://doi.org/10.3389%2Ffmolb.2022.865743},

year = 2022,

month = {jun},

publisher = {Frontiers Media {SA}},

volume = {9},

author = {Sofia S. Mariasina and Chi-Fon Chang and Tsimafei L. Navalayeu and Anastasia A. Chugunova and Sergey V. Efimov and Viktor G. Zgoda and Vasily A. Ivlev and Olga A. Dontsova and Petr V. Sergiev and Vladimir I. Polshakov},

title = {Williams-Beuren Syndrome Related Methyltransferase {WBSCR}27: From Structure to Possible Function},

journal = {Frontiers in Molecular Biosciences}

}

MLA
Цитировать
Mariasina, Sofia S., et al. “Williams-Beuren Syndrome Related Methyltransferase WBSCR27: From Structure to Possible Function.” Frontiers in Molecular Biosciences, vol. 9, June 2022. Crossref, https://doi.org/10.3389/fmolb.2022.865743.