Speckle patterns formed by broadband terahertz radiation and their applications for ghost imaging

Leibov L., Ismagilov A., Zalipaev V., Nasedkin B., Grachev Y., Petrov N., Tcypkin A.
Тип документаJournal Article
Дата публикации2021-10-08
Название журналаScientific Reports
ИздательSpringer Nature
КвартильQ1
ISSN20452322
  • Multidisciplinary
Краткое описание

Speckle patterns can be very promising for many applications due to their unique properties. This paper presents the possibility of numerically and experimentally formation of speckle patterns using broadband THz radiation. Strong dependence of the statistical parameters of speckles, such as size and sharpness on the parameters of the diffuser are demonstrated: the correlation length and the mean square deviation of the phase surface inhomogeneity. As the surface correlation length is increasing, the speckle size also increases and its sharpness goes down. Alternatively, the magnification of the standard deviation of the surface height leads to the speckle size diminishing and growth of the speckle sharpness. The dimensions of the experimentally formed speckles correspond to the results of numerical simulation. The possibility of utilizing formed speckle patterns for the implementation of the ghost imaging technique has been demonstrated by methods of numerical modeling.

Пристатейные ссылки: 56
Varying pre-plasma properties to boost terahertz wave generation in liquids
Ponomareva E.A., Ismagilov A.O., Putilin S.E., Tsypkin A.N., Kozlov S.A., Zhang X.
Q2 Communications Physics 2021 цитирований: 8
Open Access
Open access
Enhancing resolution of terahertz surface plasmon resonance microscopy by classical ghost imaging using free electron laser radiation
Khasanov I.S., Knyazev B.A., Nikitin A.K., Gerasimov V.V., Zykova L.A., Trang T.T.
2020 цитирований: 1
Powerful terahertz waves from long-wavelength infrared laser filaments
Fedorov V.Y., Tzortzakis S.
Q1 Light: Science and Applications 2020 цитирований: 6
An Open-Source 3D-Printed Terahertz Pulse Time-Domain Holographic Detection Module for Broadband Beam Inspection
Grachev Y.V., Kokliushkin V.A., Petrov N.V.
2020 цитирований: 1
Natural speckle-based watermarking with random-like illuminated decoding
Sun X., Zhang S., Ma R., Tao Y., Zhu Y., Yang D., Shi Y.
Q1 Optics Express 2020 цитирований: 1
Broadband high-resolution terahertz single-pixel imaging
Vallés A., He J., Ohno S., Omatsu T., Miyamoto K.
Q1 Optics Express 2020 цитирований: 9
Fast Terahertz Spectroscopic Holographic Assessment of Optical Properties of Diabetic Blood Plasma
Kulya M.S., Odlyanitskiy E.L., Cassar Q., Mustafin I.A., Trukhin V.N., Gavrilova P.G., Korolev D.V., Kononova Y.A., Balbekin N.S., Mounaix P., Guillet J., Petrov N.V., Smolyanskaya O.A.
Q1 Journal of Infrared, Millimeter, and Terahertz Waves 2020 цитирований: 3
New Real-Time Sub-Terahertz Security Body Scanner
Tzydynzhapov G., Gusikhin P., Muravev V., Dremin A., Nefyodov Y., Kukushkin I.
Q1 Journal of Infrared, Millimeter, and Terahertz Waves 2020 цитирований: 12
Hyperspectral terahertz microscopy via nonlinear ghost imaging
Olivieri L., Gongora J.S., Peters L., Cecconi V., Cutrona A., Tunesi J., Tucker R., Pasquazi A., Peccianti M.
Q1 Optica 2020 цитирований: 40
Re-epithelialization and immune cell behaviour in an ex vivo human skin model
Rakita A., Nikolić N., Mildner M., Matiasek J., Elbe-Bürger A.
Q1 Scientific Reports 2020 цитирований: 2367
Creating and controlling complex light
Bender N., Yılmaz H., Bromberg Y., Cao H.
Q1 APL Photonics 2019 цитирований: 10
Biomedical applications of terahertz technology
Gong A., Qiu Y., Chen X., Zhao Z., Xia L., Shao Y.
Q1 Applied Spectroscopy Reviews 2019 цитирований: 16
Guided‐Mode Resonances in All‐Dielectric Terahertz Metasurfaces
Han S., Rybin M.V., Pitchappa P., Srivastava Y.K., Kivshar Y.S., Singh R.
Q1 Advanced Optical Materials 2019 цитирований: 19
Graphene based tunable and wideband terahertz antenna for wireless network communication
Tripathi S.K., Kumar M., Kumar A.
Q1 Wireless Networks 2019 цитирований: 11
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Leibov L. и др. Speckle patterns formed by broadband terahertz radiation and their applications for ghost imaging // Scientific Reports. 2021. Т. 11. № 1.
RIS |
Цитировать

TY - JOUR

DO - 10.1038/s41598-021-99508-1

UR - http://dx.doi.org/10.1038/s41598-021-99508-1

TI - Speckle patterns formed by broadband terahertz radiation and their applications for ghost imaging

T2 - Scientific Reports

AU - Leibov, Lev

AU - Ismagilov, Azat

AU - Zalipaev, Victor

AU - Nasedkin, Boris

AU - Grachev, Yaroslav

AU - Petrov, Nikolay

AU - Tcypkin, Anton

PY - 2021

DA - 2021/10/08

PB - Springer Science and Business Media LLC

IS - 1

VL - 11

SN - 2045-2322

ER -

BibTex |
Цитировать

@article{Leibov_2021,

doi = {10.1038/s41598-021-99508-1},

url = {https://doi.org/10.1038%2Fs41598-021-99508-1},

year = 2021,

month = {oct},

publisher = {Springer Science and Business Media {LLC}},

volume = {11},

number = {1},

author = {Lev Leibov and Azat Ismagilov and Victor Zalipaev and Boris Nasedkin and Yaroslav Grachev and Nikolay Petrov and Anton Tcypkin},

title = {Speckle patterns formed by broadband terahertz radiation and their applications for ghost imaging},

journal = {Scientific Reports}

}

MLA
Цитировать
Leibov, Lev et al. “Speckle Patterns Formed by Broadband Terahertz Radiation and Their Applications for Ghost Imaging.” Scientific Reports 11.1 (2021): n. pag. Crossref. Web.