Hybrid Policy Learning for Multi-Agent Pathfinding
- General Materials Science
- General Engineering
- General Computer Science
Метрики
Цитировать
TY - JOUR
DO - 10.1109/access.2021.3111321
UR - http://dx.doi.org/10.1109/ACCESS.2021.3111321
TI - Hybrid Policy Learning for Multi-Agent Pathfinding
T2 - IEEE Access
AU - Skrynnik, Alexey
AU - Yakovleva, Alexandra
AU - Davydov, Vasilii
AU - Yakovlev, Konstantin
AU - Panov, Aleksandr I.
PY - 2021
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 126034-126047
VL - 9
SN - 2169-3536
ER -
@article{Skrynnik_2021,
doi = {10.1109/access.2021.3111321},
url = {https://doi.org/10.1109%2Faccess.2021.3111321},
year = 2021,
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
volume = {9},
pages = {126034--126047},
author = {Alexey Skrynnik and Alexandra Yakovleva and Vasilii Davydov and Konstantin Yakovlev and Aleksandr I. Panov},
title = {Hybrid Policy Learning for Multi-Agent Pathfinding},
journal = {{IEEE} Access}
}