Vector Semiotic Model for Visual Question Answering

Kovalev A.K., Shaban M., Osipov E., Panov A.I.
Тип документаJournal Article
Дата публикации2022-01-01
Название журналаCognitive Systems Research
  • Artificial Intelligence
  • Software
  • Experimental and Cognitive Psychology
  • Cognitive Neuroscience
Пристатейные ссылки: 77
Цитируется в публикациях: 2
Multi-modal actuation with the activation bit vector machine
Schmidtke H.R.
Q2 Cognitive Systems Research 2021 цитирований: 1
Question-Answering and Recommendation System on Cooking Recipes
Manna R., Das D., Gelbukh A.
Q4 Computacion y Sistemas 2021 цитирований: 1
Transformer-Based Extractive Social Media Question Answering on TweetQA
Butt S., Ashraf N., Fahim H., Sidorov G., Gelbukh A.
Q4 Computacion y Sistemas 2021 цитирований: 2
Hierarchical deep multi-modal network for medical visual question answering
Gupta D., Suman S., Ekbal A.
Q1 Expert Systems with Applications 2021 цитирований: 5
Reasoning and learning with context logic
Schmidtke H.R.
Q2 Journal of Reliable Intelligent Environments 2021 цитирований: 1
Cross-modal knowledge reasoning for knowledge-based visual question answering
Yu J., Zhu Z., Wang Y., Zhang W., Hu Y., Tan J.
Q1 Pattern Recognition 2020 цитирований: 13
Robot Navigation in Unseen Spaces using an Abstract Map
Talbot B., Dayoub F., Corke P., Wyeth G.
Q1 IEEE Transactions on Cognitive and Developmental Systems 2020 цитирований: 1
RSVQA: Visual Question Answering for Remote Sensing Data
Lobry S., Marcos D., Murray J., Tuia D.
Q1 IEEE Transactions on Geoscience and Remote Sensing 2020 цитирований: 9
LXMERT: Learning Cross-Modality Encoder Representations from Transformers
Tan H., Bansal M.
2019 цитирований: 139
Goal Setting and Behavior Planning for Cognitive Agents
Panov A.I.
Q3 Scientific and Technical Information Processing 2019 цитирований: 7
Deep Modular Co-Attention Networks for Visual Question Answering
Yu Z., Yu J., Cui Y., Tao D., Tian Q.
2019 цитирований: 103
Logical lateration – A cognitive systems experiment towards a new approach to the grounding problem
Schmidtke H.R.
Q2 Cognitive Systems Research 2018 цитирований: 9
Image Captioning and Visual Question Answering Based on Attributes and External Knowledge
Wu Q., Shen C., Wang P., Dick A., van den Hengel A.
Q1 IEEE Transactions on Pattern Analysis and Machine Intelligence 2018 цитирований: 120
Visual question answering: A survey of methods and datasets
Wu Q., Teney D., Wang P., Shen C., Dick A., van den Hengel A.
Q1 Computer Vision and Image Understanding 2017 цитирований: 92
Mask R-CNN
He K., Gkioxari G., Dollar P., Girshick R.
2017 цитирований: 6103
1. Kovalev A.K. и др. Vector Semiotic Model for Visual Question Answering // Cognitive Systems Research. 2022. Т. 71. С. 52–63.


DO - 10.1016/j.cogsys.2021.09.001

UR -

TI - Vector Semiotic Model for Visual Question Answering

T2 - Cognitive Systems Research

AU - Kovalev, Alexey K.

AU - Shaban, Makhmud

AU - Osipov, Evgeny

AU - Panov, Aleksandr I.

PY - 2022

DA - 2022/01

PB - Elsevier BV

SP - 52-63

VL - 71

SN - 1389-0417

ER -

BibTex |


doi = {10.1016/j.cogsys.2021.09.001},

url = {},

year = 2022,

month = {jan},

publisher = {Elsevier {BV}},

volume = {71},

pages = {52--63},

author = {Alexey K. Kovalev and Makhmud Shaban and Evgeny Osipov and Aleksandr I. Panov},

title = {Vector Semiotic Model for Visual Question Answering},

journal = {Cognitive Systems Research}


Kovalev, Alexey K. et al. “Vector Semiotic Model for Visual Question Answering.” Cognitive Systems Research 71 (2022): 52–63. Crossref. Web.