Open Access
Open access

Intrinsic Motivation to Learn Action-State Representation with Hierarchical Temporal Memory

Dzhivelikian E., Latyshev A., Kuderov P., Panov A.I.
Тип документаBook Chapter
Дата публикации2021-01-01
Название журналаLecture Notes in Computer Science
ИздательSpringer Nature
КвартильQ3
ISSN03029743, 16113349
Пристатейные ссылки: 20
Цитируется в публикациях: 1
Planning with Hierarchical Temporal Memory for Deterministic Markov Decision Problem
Panov A., Kuderov P.
2021 цитирований: 1
Extended Hierarchical Temporal Memory for Motion Anomaly Detection
Daylidyonok I., Frolenkova A., Panov A.I.
Q3 Advances in Intelligent Systems and Computing 2019 цитирований: 3
Computational Model for Reward-Based Generation and Maintenance of Motivation
Taj F., Klein M.C., van Halteren A.
Q3 Lecture Notes in Computer Science 2018 цитирований: 1
Open Access
Open access
Self-programming Robots Boosted by Neural Agents
Chang O.
Q3 Lecture Notes in Computer Science 2018 цитирований: 3
Open Access
Open access
The HTM Spatial Pooler—A Neocortical Algorithm for Online Sparse Distributed Coding
Cui Y., Ahmad S., Hawkins J.
Q3 Frontiers in Computational Neuroscience 2017 цитирований: 36
Open Access
Open access
A Theory of How Columns in the Neocortex Enable Learning the Structure of the World
Hawkins J., Ahmad S., Cui Y.
Q1 Frontiers in Neural Circuits 2017 цитирований: 38
Open Access
Open access
GRAIL: A Goal-Discovering Robotic Architecture for Intrinsically-Motivated Learning
Santucci V.G., Baldassarre G., Mirolli M.
Q1 IEEE Transactions on Cognitive and Developmental Systems 2016 цитирований: 29
Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex
Hawkins J., Ahmad S.
Q1 Frontiers in Neural Circuits 2016 цитирований: 141
Open Access
Open access
Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot
Fiore V.G., Sperati V., Mannella F., Mirolli M., Gurney K., Friston K., Dolan R.J., Baldassarre G.
Q2 Frontiers in Psychology 2014 цитирований: 25
Open Access
Open access
A biologically plausible embodied model of action discovery
Bolado-Gomez R., Gurney K.
Q2 Frontiers in Neurorobotics 2013 цитирований: 14
Open Access
Open access
Developing PFC representations using reinforcement learning
Reynolds J.R., O’Reilly R.C.
Q1 Cognition 2009 цитирований: 36
Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective
Botvinick M.M., Niv Y., Barto A.G.
Q1 Cognition 2009 цитирований: 325
Temporal Difference Models and Reward-Related Learning in the Human Brain
O'Doherty J.P., Dayan P., Friston K., Critchley H., Dolan R.J.
Q1 Neuron 2003 цитирований: 915
Finite-time Analysis of the Multiarmed Bandit Problem
Auer P., Cesa-Bianchi N., Fischer P.
Q1 Machine Learning 2002 цитирований: 1948
Open Access
Open access
Event structure in perception and conception.
Zacks J.M., Tversky B.
Q1 Psychological Bulletin 2001 цитирований: 499
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Dzhivelikian E. и др. Intrinsic Motivation to Learn Action-State Representation with Hierarchical Temporal Memory // Lecture Notes in Computer Science. 2021. С. 13–24.
RIS |
Цитировать

TY - GENERIC

DO - 10.1007/978-3-030-86993-9_2

UR - http://dx.doi.org/10.1007/978-3-030-86993-9_2

TI - Intrinsic Motivation to Learn Action-State Representation with Hierarchical Temporal Memory

T2 - Brain Informatics

AU - Dzhivelikian, Evgenii

AU - Latyshev, Artem

AU - Kuderov, Petr

AU - Panov, Aleksandr I.

PY - 2021

PB - Springer International Publishing

SP - 13-24

SN - 0302-9743

SN - 1611-3349

ER -

BibTex |
Цитировать

@incollection{Dzhivelikian_2021,

doi = {10.1007/978-3-030-86993-9_2},

url = {https://doi.org/10.1007%2F978-3-030-86993-9_2},

year = 2021,

publisher = {Springer International Publishing},

pages = {13--24},

author = {Evgenii Dzhivelikian and Artem Latyshev and Petr Kuderov and Aleksandr I. Panov},

title = {Intrinsic Motivation to Learn Action-State Representation with Hierarchical Temporal Memory},

booktitle = {Brain Informatics}

}

MLA
Цитировать
Dzhivelikian, Evgenii et al. “Intrinsic Motivation to Learn Action-State Representation with Hierarchical Temporal Memory.” Lecture Notes in Computer Science (2021): 13–24. Crossref. Web.