страницы 275-308

Digitale Transformation im Bauwesen – Grundlagen zur künstlichen Intelligenz und deren Anwendung im Wohnungsbau

Michael A Kraus
Mathias Obergrießer
Тип публикацииOther
Дата публикации2023-02-08
Краткое описание
Chapter 1 Digitale Transformation im Bauwesen – Grundlagen zur künstlichen Intelligenz und deren Anwendung im Wohnungsbau Michael A. Kraus, Michael A. KrausSearch for more papers by this authorMathias Obergrießer, Mathias ObergrießerSearch for more papers by this author Michael A. Kraus, Michael A. KrausSearch for more papers by this authorMathias Obergrießer, Mathias ObergrießerSearch for more papers by this author Book Editor(s):Detleff Schermer, Detleff Schermer RegensburgSearch for more papers by this authorEric Brehm, Eric Brehm KarlsruheSearch for more papers by this author First published: 08 February 2023 https://doi.org/10.1002/9783433611142.ch12 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Zusammenfassung Dieser Beitrag führt die im Mauerwerk-Kalender 2022 begonnene Reihe zur digitalen Transformation der Planung im Bauwesen weiter. Dazu werden mit Hinblick auf die Anwendung im Wohnungsbau zunächst relevante Grundlagen der digitalen Transformation des Bauwesens in Abschnitt~2 sowie künstlicher Intelligenz (KI), maschinelles und tiefes Lernen in Abschnitt~3 eingeführt. Insbesondere verfolgt Abschnitt~3 zur KI die Erzielung eines begriff‌lichen und semantischen Verständnisses verschiedener KI-Algorithmen, Modelle und für das Arbeiten mit Daten, insbesondere für die in Abschnitt~4 und~5 betrachteten Anwendungsbeispiele und Zukunftspotenziale im Wohnungsbau. In Abschnitt~4 werden Anwendungen von KI in den Lebenszyklusphasen eines Immobilienprojekts anhand von Beispielen aufgezeigt. Dabei werden Beispiele zum generativen Design von Wohnungsgrundrissen in frühen Planungsphasen, die Unterstützung von statischen Berechnungen mit KI, der Einsatz von KI im Zuge der Bauausführung sowie im Betrieb einer Immobilie detaillierter betrachtet. Abgeschlossen wird dieser Beitrag mit einem Ausblick, welcher die Gesamtheit der dargestellten Inhalte betrachtet und bewertet, sodass ein Ableiten von Schlussfolgerungen, Implikationen und Empfehlungen für Forschung und Baupraxis bzgl. der digitalen Transformation und des Einsatzes von KI möglich wird. Literatur Talin , B. ( 2021 ) Digitalisierung vs. Digitale Transformation – Wo liegt der Unterschied? MoreThanDigital , Feb. 2021, [Online]. Available: https://morethandigital.info/digitalisierung-vs-digitale-transformation-wo-liegt-der-unterschied Google Scholar Kraus , M.A. ; Drass , M. ; Hörsch , B. ; Schneider , J. ; Kaufmann , W. ( 2022 ) Künstliche Intelligenz – multiskale und crossdomäne Synergien von Raumfahrt und Bauwesen , in: K. Bergmeister ; F. Fingerloos ; J.-D. Wörner [Hrsg.] Beton-Kalender 2022 , Berlin : Ernst & Sohn , S. 607 – 690 . 10.1002/9783433610879.ch9 Google Scholar Obergrießer , M. ; Kraus , M. ( 2022 ) Digitale Transformation im Bauwesen – Von der Theorie zur Anwendung , in: D. Schermer ; E. Brehm [Hrsg.] Mauerwerk-Kalender 2022 . Berlin : Ernst & Sohn , S. 499 – 520 . 10.1002/9783433611029.ch16 Google Scholar Kraus , M.A. ; Lammel , L. ; Obergrießer , M. ( 2022 ) Digitale Transformation und Künstliche Intelligenz – Herausforderungen und Lösungsansätze bei der Kombination von Theorie und Praxis , in: Ingenieurbaukunst 2022 . Berlin : Ernst & Sohn , S. 168 – 173 . Google Scholar Schober , K.-S. ( 2020 ) Artificial intelligence in the construction industry . Roland Berger GmbH , Feb. 2020, [Online]. Available: https://www.rolandberger.com/en/Point-of-View/Artificial-intelligence-in-the-construction-industry.html Google Scholar Schober K.-S. et al. ( 2017 ) Turning point for the construction industry The disruptive impact of Building Information Modeling (BIM) . Roland Berger Focus, no. September, 2017. Google Scholar Lecat , A. ; Schober , K.-S. ( 2018 ) Hot trends in construction: A new era of opportunities . Google Scholar Barbosa , F. et al. ( 2017 ) Reinventing construction: a route to higher productivity . McKinsey Glob. Inst. Google Scholar Chui , M. ; Manyika , J. ; Miremadi , M. ( 2018 ) What AI can and can't do (yet) for your business . McKinsey Q . Google Scholar Günthner , W. ; Borrmann , A. ( 2011 ) Digitale Baustelle – innovativer Planen, effizienter Ausführen – Werkzeuge und Methoden für das Bauen im 21. Jahrhundert . Berlin Heidelberg : Springer-Verlag . 10.1007/978-3-642-16486-6 Google Scholar A. Borrmann ; M. König ; C. Koch ; J. Beetz [Eds.] ( 2021 ) Building Information Modeling: Technologische Grundlagen und industrielle Praxis. VDI-Buch . Wiesbaden : Springer Vieweg . 10.1007/978-3-658-33361-4 Google Scholar Sacks , R. ; Eastman , C. ; Lee , G. ; Teicholz , P. ( 2018 ) BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers . 3rd Edition , Wiley . 10.1002/9781119287568 Google Scholar Fischer , M. ; Ashcraft , H.W. , Reed , D. ; Khanzode , A. ( 2017 ) Integrating Project Delivery . Wiley . 10.1002/9781119049272 Google Scholar Goulet , J.-A. ( 2020 ) Probabilistic Machine Learning for Civil Engineers . MIT Press . Google Scholar Russell , S.J. , Norvig , P. ( 2018 ) Artificial intelligence: A modern approach. Noida . India : Pearson India Education Services Pvt. Ltd . Google Scholar Lecun , Y. ; Bengio , Y. ; Hinton , G. ( 2015 ) Deep learning , vol. 521 , no. 7553 . Nature Publishing Group , pp. 436 – 444 . CASGoogle Scholar Binkhonain , M. ; Zhao , L. ( 2019 ) A review of machine learning algorithms for identification and classification of non-functional requirements , Expert Syst. with Appl. X , vol. 1 , p. 100001 , https://doi.org/ 10.1016/j.eswax.2019.100001 10.1016/j.eswax.2019.100001 Google Scholar Goodfellow , I. ; Bengio , Y. ; Courville , A. ( 2016 ) Deep Learning . MIT Press . Google Scholar Kraus , M.A. ; Drass , M. ( 2020 ) Artificial intelligence for structural glass engineering applications – overview, case studies and future potentials , Glas. Struct. Eng. , vol. 5 , no. 3 , pp. 247 – 285 , https://doi.org/ 10.1007/s40940-020-00132-8 10.1007/s40940?020?00132?8 Web of Science®Google Scholar Chowdhary , K.R. ( 2020 ) Introducing Artificial Intelligence , in: Fundamentals of Artificial Intelligence . Springer , pp. 1 – 23 . 10.1007/978-81-322-3972-7_1 Google Scholar McCarthy , J. ; Minsky , M.L. ; Rochester , N. ; Shannon , C.E. ( 2006 ) A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955 . AI Mag. , vol. 27 , no. 4 , p. 12 . Web of Science®Google Scholar McCarthy , J. ; Minsky , M.L. ; Rochester , N. ( 1956 ) The Dartmouth summer research project on artificial intelligence , Artif. Intell. past, Present. Futur. Google Scholar Kraus , M. ; Drass , M. ( 2020 ) Künstliche Intelligenz im Bauingenieurwesen – Hintergründe, Status Quo und Potentiale . Bauingenieur, H. 10. Google Scholar Mitchell , T.M. ( 1997 ) Machine Learning , 1st ed. McGraw-Hill . Google Scholar Frochte , J. ( 2019 ) Maschinelles Lernen – Grundlagen und Algorithmen in Python . Carl Hanser Verlag GmbH Co. KG . 10.3139/9783446459977 Google Scholar Bishop , C.M. ( 2006 ) Pattern Recognition and Machine Learning . Springer . 10.1007/978-0-387-45528-0 Google Scholar Kuhn , M. ; Johnson , K. ( 2013 ) Applied Predictive Modeling , vol. 26 . Springer . 10.1007/978-1-4614-6849-3 Google Scholar Raschka , S. ( 2018 ) Model evaluation, model selection, and algorithm selection in machine learning . arXiv Prepr. arXiv1811.12808. Google Scholar Brownlee , J. ( 2016 ) Machine Learning Mastery With Python: Understand Your Data, Create Accurate Models, and Work Projects End-to-End . Machine Learning Mastery . Google Scholar O'Leary , D.E. ( 2013 ) Artificial intelligence and big data . IEEE Intell. Syst. , vol. 28 , no. 2 , pp. 96 – 99 . 10.1109/MIS.2013.39 PubMedWeb of Science®Google Scholar Garcia , S. ; Ramirez-Gallego , S. ; Luengo , J. ; Benitez , J.M. ; Herrera , F. ( 2016 ) Big data preprocessing: methods and prospects . Big Data Anal. , vol. 1 , no. 1 , p. 9 . 10.1186/s41044-016-0014-0 Google Scholar Rusu , O. et al. ( 2013 ) Converting unstructured and semi-structured data into knowledge . In: 2013 11th RoEdu-Net International Conference, pp. 1 – 4 . Google Scholar Turner , C.R. ; Fuggetta , A. ; Lavazza , L. ; Wolf , A.L. ( 1999 ) A conceptual basis for feature engineering . J. Syst. Softw. , vol. 49 , no. 1 , pp. 3 – 15 . 10.1016/S0164-1212(99)00062-X Web of Science®Google Scholar Ozdemir , S. ; Susarla , D. ( 2018 ) Feature Engineering Made Easy: Identify unique features from your dataset in order to build powerful machine learning systems . Packt Publishing Ltd. Google Scholar Reitermanova , Z. ( 2010 ) Data splitting . WDS , vol. 10 , pp. 31 – 36 . Google Scholar Rebala , G. ; Ravi , A. ; Churiwala , S. ( 2019 ) An Introduction to Machine Learning . Springer . 10.1007/978-3-030-15729-6 Google Scholar Drass , M. ; Kraus , M.A. ; Stelzer , I. ( 2021 ) SOUND-LAB AI-Estimator – Machine Learning for Sound Insulation Value Predictions of various Glass Structures . Glas. Struct. Eng., vol. submitted. Google Scholar Kraus , M.A. ( 2019 ) Machine Learning Techniques for the Material Parameter Identification of Laminated Glass in the Intact and Post-Fracture State . Universität der Bundeswehr München . Google Scholar Hastie , T. ; Tibshirani , R. ; Friedman , J. ( 2009 ) The elements of statistical learning: data mining, inference, and prediction . Springer Science & Business Media . 10.1007/978-0-387-84858-7 Google Scholar Witten , I.H. ; Frank , E. ; Hall , M.A. ; Pal , C. ( 2016 ) Data Mining: Practical machine learning tools and techniques . Morgan Kaufmann . Google Scholar Lloyd , S. ( 1982 ) Least squares quantization in PCM . IEEE Trans. Inf. theory , vol. 28 , no. 2 , pp. 129 – 137 . 10.1109/TIT.1982.1056489 Web of Science®Google Scholar Roweis , S.T. ; Saul , L.K. ( 2000 ) Nonlinear dimensionality reduction by locally linear embedding . Science , vol. 290 , no. 5500 , pp. 2323 – 2326 . 10.1126/science.290.5500.2323 CASPubMedWeb of Science®Google Scholar Murphy , K.P. ( 2012 ) Machine Learning: A Probabilistic Perspective . MIT Press . Google Scholar Tandia , A. ; Onbasli , M.C. ; Mauro , J.C. ( 2019 ) Machine Learning for Glass Modeling , in: Springer Handbooks, pp. 1157 – 1192 . Google Scholar Chang , N.-B. ; Bai , K. ( 2018 ) Multisensor data fusion and machine learning for environmental remote sensing . CRC Press . 10.1201/9781315154602 Google Scholar Van Veen , F. ( 2016 ) The neural network zoo [Online]. Available: https://www.asimovinstitute.org/neural-network-zoo Google Scholar Sun , L. ; Shang , Z. ; Xia , Y. ; Bhowmick , S. ; Nagarajaiah , S. ( 2020 ) Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection . J. Struct. Eng. , vol. 146 , no. 5 , p. 04020073 , https://doi.org/ 10.1061/(asce)st.1943-541x.0002535 10.1061/(asce)st.1943?541x.0002535 Web of Science®Google Scholar Riedel , H. ( 2020 ) Applications of artificial intelligence for crack detection in concrete structures , Darmstadt . Google Scholar Paluszek , M. ; Thomas , S. ( 2016 ) MATLAB machine learning . Apress . Google Scholar Goodfellow , I.J. et al. ( 2014 ) Generative adversarial nets . Adv. Neural Inf. Process. Syst. , vol. 3 , no. January, pp. 2672 – 2680 , https://doi.org/ 10.3156/jsoft.29.5_177_2 10.3156/jsoft.29.5_177_2 Google Scholar Leijnen , S. ; van Veen , F. ( 2016 ) The Neural Network Zoo . https://www.asimovinstitute.org/neural-network-zoo [accessed Dec. 12, 2019]. Google Scholar Fink , O. ; Wang , Q. ; Svensén , M. ; Dersin , P. ; Lee , W.J. ; Ducoffe , M. ( 2020 ) Potential, challenges and future directions for deep learning in prognostics and health management applications . Eng. Appl. Artif. Intell. , vol. 92 , p. 103678 , Jun. 2020, https://doi.org/ 10.1016/j.engappai.2020.103678 10.1016/j.engappai.2020.103678 Web of Science®Google Scholar Graves , A. ( 2012 ) Sequence transduction with recurrent neural networks . arXiv Prepr. arXiv1211.3711. Google Scholar Skansi , S. ( 2018 ) Autoencoders , in: Introduction to Deep Learning , Springer , pp. 153 – 163 . 10.1007/978-3-319-73004-2_8 Google Scholar Kaufmann , W. ; Meier , B. ( 2015 ) Conceptual bridge design beyond signature structures , in: IABSE Conference, Geneva 2015: Structural Engineering: Providing Solutions to Global Challenges – Report , pp. 510 – 517 , https://doi.org/ 10.2749/222137815818357520 Google Scholar Stamm-Teske , W. ; Fisher , K. ; Haag , T. ( 2010 ) Raumpilot: Wohnen . Krämer . Google Scholar Sacks , R. ; Brilakis , I. ; Pikas , E. ; Xie , H.S. ; Girolami , M. ( 2020 ) Construction with digital twin information systems , Data-Centric Eng. , vol. 1 , https://doi.org/ 10.1017/dce.2020.16 10.1017/dce.2020.16 Google Scholar Martin , J. ( 2022 ) Procedural House Generation : A method for dynamically generating floor plans , ACMTrans. Graph., pp. 1 – 2 , 2006, Accessed: Mar. 13 [Online]. Available: https://axon.cs.byu.edu/Dan/673/papers/martin.pdf Google Scholar Merrell , P. ; Schkufza , E. ; Koltun , V. ( 2010 ) Computer-generated residential building layouts . ACM Transactions on Graphics , vol. 29 , no. 6 , https://doi.org/ 10.1145/1866158.1866203 10.1145/1866158.1866203 Web of Science®Google Scholar Nauata , N. ; Chang , K.-H. ; Cheng , C.-Y. ; Mori , G. ; Furukawa , Y. ( 2020 ) House-GAN: Relational Generative Adversarial Networks for Graph-constrained House Layout Generation . arXiv Prepr. arXiv2003.06988 [Online]. Available: http://arxiv.org/abs/2003.06988 Google Scholar Nauata , N. ; Hosseini , S. ; Chang , K.H. ; Chu , H. ; Cheng , C.Y. ; Furukawa , Y. ( 2021 ) House-GaN++: Generative adversarial layout refinement network towards intelligent computational agent for professional architects . Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 13627 – 13636 , https://doi.org/ 10.1109/CVPR46437.2021.01342 Google Scholar Autodesk Inc . ( 2020 ) GENERATIVE DESIGN . https://www.autodesk.com/solutions/generative-design Google Scholar Autodesk ( 2018 ) Demystifying Generative Design for Architecture, Engineering and Construction [Online]. Available: https://www.autodesk.com/content/dam/autodesk/www/solutions/generative-design/autodesk-aec-generative-design-ebook.pdf Google Scholar Drass , M. ; Kraus , M.A. ; Stelzer , I. ( 2022 ) SoundLab AI-Estimator – Machine Learning for Sound Insulation Value Predictions of various Glass Structures , Glas. Struct. Eng. , Vol. 7 , pp. 101 – 118 . 10.1007/s40940-022-00167-z Web of Science®Google Scholar Keane , A. ; Forrester , A. ; Sobester , A. ( 2008 ) Engineering Design via Surrogate Modelling: A Practical Guide . John Wiley & Sons . 10.2514/4.479557 Google Scholar Chen , T. ; Guestrin , C. ( 2016 ) XGBoost: A scalable tree boosting system . Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13.–17. Aug., pp. 785 – 794 , https://doi.org/ 10.1145/2939672.2939785 Google Scholar Kraus , M. ; Kaufmann , W. ; Thoma , K. ( 2020 ) KI-basierte Analyse und Optimierung von Betonstrukturen . Zentrum für erweitertes computergestütztes Entwerfen in Architektur und Bauingenieurwesen, ETH Zürich [Online]. Available: https://designplusplus.ethz.ch/de/forschung/ki-basierte-analyse.html Google Scholar Toffolon , A. ; Kraus , M. ; Taras , A. ( 2020 ) Deep Learning based method for the prediction of the buckling resistance of SHS and RHS . Google Scholar Kraus , M.A. ; Taras , A. ( 2020 ) Physikinformierte Künstliche Intelligenz zur Berechnung und Bemessung im Stahlbau . Stahlbau 89 , H. 10, S. 824 – 832 , https://doi.org/ 10.1002/stab.202000074 10.1002/stab.202000074 Web of Science®Google Scholar Greiner , P. ; Mayer , P.E. ; Stark , K. ( 2005 ) Phasenkonzepte , in: Baubetriebslehre – Projektmanagement . Springer , S. 11 – 32 . 10.1007/978-3-322-92862-7_2 Google Scholar Omotayo , T. ; Bankole , A. ; Olanipekun , A.O. ( 2020 ) An artificial neural network approach to predicting most applicable post-contract cost controlling techniques in construction projects . Appl. Sci. , vol. 10 , no. 15 , p. 5171 , https://doi.org/ 10.3390/app10155171 10.3390/app10155171 CASWeb of Science®Google Scholar Fuchs , Berger , Seifert ( 2022 ) HOAI-Kommentar . Beck . Google Scholar Russakovsky O. et al. ( 2015 ) ImageNet Large Scale Visual Recognition Challenge . Int. J. Comput. Vis. , vol. 115 , no. 3 , pp. 211 – 252 , https://doi.org/ 10.1007/s11263-015-0816-y 10.1007/s11263-015-0816-y Web of Science®Google Scholar Szegedy , C. ; Ioffe , S. ; Vanhoucke , V. ; Alemi , A. ( 2017 ) Inception-v4, inception-resnet and the impact of residual connections on learning . Proceedings of the AAAI Conference on Artificial Intelligence , vol. 31 , no. 1 . 10.1609/aaai.v31i1.11231 Google Scholar Angnes , U. ( 2011 ) Wiederkehrende Bauwerksprüfungen im Hochbau nach VDI 6200 Standsicherheit von Bauwerken – Regelmäßige Überprüfung . TAS-Kongress 2011. Kaiserslautern . Google Scholar Marks , D. (o. J.) Lebenszykluskosten eines Gebäudes . https://bautipps.almondia.com/bauplanung/hausplanung/lebenszykluskosten-gebaeude Google Scholar Bouabdallaoui , Y. ; Lafhaj , Z. ; Yim , P. ; Ducoulombier , L. ; Bennadji , B. ( 2021 ) Predictive maintenance in building facilities: A machine learning-based approach . Sensors (Switzerland) , vol. 21 , no. 4 , pp. 1 – 15 , https://doi.org/10.3390/s21041044 10.3390/s21041044 Web of Science®Google Scholar Miller , C. ; Meggers , F. ( 2017 ) The Building Data Genome Project: An open, public data set from non-residential building electrical meters . Energy Procedia , vol. 122 , pp. 439 – 444 , Sep. 2017, https://doi.org/ 10.1016/j.egypro.2017.07.400 10.1016/j.egypro.2017.07.400 Google Scholar Avss , P. ; Prasant , S. ; Jain , R. ( 2009 ) Virtual prototyping increases productivity – A case study , in: 2009 International Symposium on VLSI Design, Automation and Test, pp. 96 – 101 . Google Scholar Bordegoni , M. ; Rizzi , C. ( 2011 ) Innovation in product design: from CAD to virtual prototyping . Springer . 10.1007/978-0-85729-775-4 Google Scholar De Schutter , T. ( 2014 ) Better Software. Faster! Best Practices in Virtual Prototyping . Happy About . Google Scholar Wang , G.G. ( 2002 ) Definition and review of virtual prototyping . J. Comput. Inf. Sci. Eng. , vol. 2 , no. 3 , pp. 232 – 236 , https://doi.org/ 10.1115/1.1526508 10.1115/1.1526508 Google Scholar Huang , T. ; Kong , C.W. ; Guo , H.L. ; Baldwin , A. ; Li , H. ( 2007 ) A virtual prototyping system for simulating construction processes . Autom. Constr. , vol. 16 , no. 5 , pp. 576 – 585 , https://doi.org/ 10.1016/j.autcon.2006.09.007 10.1016/j.autcon.2006.09.007 Web of Science®Google Scholar Koppelhuber , J. ( 2017 ) Holzbau in der Bauwirtschaft – ein Paradigmenwechsel hin zum Industriellen Bauen , in: Tagungsband Forum Holz Bau Urban Köln, S. 3 – 12 . Google Scholar Svilans , T. ; Tamke , M. ; Thomsen , M.R. ; Runberger , J. ; Strehlke , K. ; Antemann , M. ( 2019 ) New workflows for digital timber , in: Lecture Notes in Civil Engineering , vol. 24 , Springer , pp. 93 – 134 . Google Scholar Kerber , E. ; Heimig , T. ; Stumm , S. ; Oster , L. ; Brell-Cokcan , S. ; Reisgen , U. ( 2018 ) Towards robotic fabrication in joining of steel , in: ISARC 2018 – 35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things , vol. 35, pp. 1 – 9 , https://doi.org/ 10.22260/isarc2018/0062 Google Scholar Ding , K. et al. ( 2018 ) Smart steel bridge construction enabled by BIM and Internet of Things in industry 4.0: A framework , in: ICNSC 2018 – 15th IEEE International Conference on Networking, Sensing and Control , pp. 1 – 5 , https://doi.org/ 10.1109/ICNSC.2018.8361339 Google Scholar Xiang , F. ; Zhi , Z. ; Jiang , G. ( 2018 ) Digital twins technolgy and its data fusion in iron and steel product life cycle , in: ICNSC 2018 – 15th IEEE International Conference on Networking, Sensing and Control , pp. 1 – 5 , https://doi.org/ 10.1109/ICNSC.2018.8361293 Google Scholar Kraus , M.A. ; Drass , M. ( 2020 ) Künstliche Intelligenz für die Gebäudehülle . Dtsch. Ingenieurblatt , H. 4. Google Scholar Kraus , M.A. ; Drass , M. ; Schneider , J. ( 2021 ) Anwendungen und Potenziale des Einsatzes von Künstlicher Intelligenz im Bereich von Gebäudehüllen . Glasbau . Google Scholar Wangler , T. ; Roussel , N. ; Bos , F.P. ; Salet , T.A.M. ; Flatt , R.J. ( 2019 ) Digital concrete: a review . Cem. Concr. Res. , vol. 123 , p. 105780 . 10.1016/j.cemconres.2019.105780 CASWeb of Science®Google Scholar Mechtcherine , V. et al. ( 2019 ) Alternative reinforcements for digital concrete construction , in: RILEM Book-series , vol. 19 , pp. 167 – 175 , https://doi.org/ 10.1007/978-3-319-99519-9_15 10.1007/978?3?319?99519?9_15 Google Scholar Asprone , D. ; Menna , C. , Bos , F.P. ; Salet , T.A.M. ; Mata-Falcón , J. ; Kaufmann , W. ( 2018 ) Rethinking reinforcement for digital fabrication with concrete . Cem. Concr. Res. , vol. 112 , pp. 111 – 121 , https://doi.org/ 10.1016/j.cemconres.2018.05.020 10.1016/j.cemconres.2018.05.020 CASWeb of Science®Google Scholar Li , H. ; Chan , N.K.Y. ; Huang , T. ; Skitmore , M. ; Yang , J. ( 2012 ) Virtual prototyping for planning bridge construction , Autom. Constr. , vol. 27 , pp. 1 – 10 , https://doi. org/ 10.1016/j.autcon.2012.04.009 10.1016/j.autcon.2012.04.009 Web of Science®Google Scholar Stumm , S. ; Brell-Cokcan , S. ; Feldmann , M. ( 2019 ) Robotik im Stahlbau 4.0: Von der digitalen Planung zu Produktion und Bau , in: U. Kuhlmann [Hrsg.] Stahlbau-Kalender 2019 , S. 733 – 778 , https://doi.org/ 10.1002/9783433609873.ch12 Google Scholar Githens , G. ( 2007 ) Product Lifecycle Management: Driving the Next Generation of Lean Thinking by Michael Grieves , vol. 24 , no. 3. McGraw Hill Professional . Google Scholar Hack , N. et al. ( 2020 ) Structural stay-in-place formwork for robotic in situ fabrication of non-standard concrete structures: A real scale architectural demonstrator . Autom. Constr. , vol. 115 , p. 103197 , https://doi.org/ 10.1016/j.autcon.2020.103197 10.1016/j.autcon.2020.103197 Web of Science®Google Scholar Hack , N. et al. ( 2017 ) Mesh Mould: An on Site, Robotically Fabricated, Functional Formwork . National Museum of Qatar View project Concrete Hinges View project, in: Second Concrete Innovation Conference (2nd CIC) , vol. 19, pp. 1 – 10 , [Online]. Available: https://www.researchgate.net/publication/314952069 Google Scholar Kersting , K. ( 2020 ) Rethinking Computer Science Through AI . KI – Künstliche Intelligenz , vol. 34 , no. 4 , pp. 435 – 437 , https://doi.org/ 10.1007/s13218-020-00692-5 10.1007/s13218?020?00692?5 Web of Science®Google Scholar Gartner ( 2021 ) Hype-Cycle für emergente Technologien 2021 . https://www.gartner.de/de/artikel/3-themen-im-hype-cycle-fuer-emerging-technologies-2021 Google Scholar Aggarwal , A. ; Mittal , M. ; Battineni , G. ( 2021 ) Generative adversarial network: An overview of theory and applications . Int. J. Inf. Manag. Data Insights, p. 100004 , https://doi.org/ 10.1016/j.jjimei.2020.100004 Google Scholar Bischof , R. ; Kraus , M. ( 2021 ) Multi-Objective Loss Balancing for Physics-Informed Deep Learning , https://doi.org/10.13140/RG.2.2.20057.24169 10.13140/RG.2.2.20057.24169 Google Scholar Raissi , M. ; Perdikaris , P. ; Karniadakis , G.E. ( 2017 ) Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations , Nov. 2017, Accessed: Dec. 08, 2019. [Online]. Available: http://arxiv.org/abs/1711.10561 Google Scholar Raissi , M. ; Perdikaris , P. ; Karniadakis , G.E. ( 2017 ) Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations , Nov. 2017, Accessed: Dec. 08, 2019. [Online]. Available: http://arxiv.org/abs/1711.10566 Google Scholar Rui , Y. ( 2017 ) From artificial intelligence to augmented intelligence . IEEE Multimed. , vol. 24 , no. 1 , pp. 4 – 5 . 10.1109/MMUL.2017.8 Google Scholar Lui , A. ; Lamb , G.W. ( 2018 ) Artificial intelligence and augmented intelligence collaboration: regaining trust and confidence in the financial sector . Inf. Commun. Technol. Law , vol. 27 , no. 3 , pp. 267 – 283 . 10.1080/13600834.2018.1488659 Google Scholar Zheng , N. et al. ( 2017 ) Hybrid-augmented intelligence: collaboration and cognition . Front. Inf. Technol. Electron. Eng. , vol. 18 , no. 2 , pp. 153 – 179 . 10.1631/FITEE.1700053 Web of Science®Google Scholar 2023 Mauerwerk Kalender: Instandsetzung Erdbeben Lehmbau ReferencesRelatedInformation
Найдено 
Найдено 

Топ-30

Издатели

1
Wiley
1 публикация, 50%
Springer Nature
1 публикация, 50%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Поделиться