Publication type: Other
Publication date: 2024-03-28
Abstract
Chapter 5 Microwave- and Ultrasonic-Assisted Coupling Reactions Sandeep Yadav, Sandeep Yadav University of Delhi, Atma Ram Sanatan Dharma College, Department of Chemistry, Dhaula Kuan, Delhi, 110021 India SRM Institute of Science and Technology, Department of Chemistry, Faculty of Engineering and Technology, NCR Campus, Uttar Pradesh, 201204 IndiaSearch for more papers by this authorAnirudh P.S. Raman, Anirudh P.S. Raman University of Delhi, Atma Ram Sanatan Dharma College, Department of Chemistry, Dhaula Kuan, Delhi, 110021 India SRM Institute of Science and Technology, Department of Chemistry, Faculty of Engineering and Technology, NCR Campus, Uttar Pradesh, 201204 IndiaSearch for more papers by this authorKashmiri Lal, Kashmiri Lal Guru Jambheshwar University of Science and Technology, Department of Chemistry, Hisar, Haryana, 125001 IndiaSearch for more papers by this authorPallavi Jain, Pallavi Jain SRM Institute of Science and Technology, Department of Chemistry, Faculty of Engineering and Technology, NCR Campus, Uttar Pradesh, 201204 IndiaSearch for more papers by this authorPrashant Singh, Prashant Singh University of Delhi, Atma Ram Sanatan Dharma College, Department of Chemistry, Dhaula Kuan, Delhi, 110021 IndiaSearch for more papers by this author Sandeep Yadav, Sandeep Yadav University of Delhi, Atma Ram Sanatan Dharma College, Department of Chemistry, Dhaula Kuan, Delhi, 110021 India SRM Institute of Science and Technology, Department of Chemistry, Faculty of Engineering and Technology, NCR Campus, Uttar Pradesh, 201204 IndiaSearch for more papers by this authorAnirudh P.S. Raman, Anirudh P.S. Raman University of Delhi, Atma Ram Sanatan Dharma College, Department of Chemistry, Dhaula Kuan, Delhi, 110021 India SRM Institute of Science and Technology, Department of Chemistry, Faculty of Engineering and Technology, NCR Campus, Uttar Pradesh, 201204 IndiaSearch for more papers by this authorKashmiri Lal, Kashmiri Lal Guru Jambheshwar University of Science and Technology, Department of Chemistry, Hisar, Haryana, 125001 IndiaSearch for more papers by this authorPallavi Jain, Pallavi Jain SRM Institute of Science and Technology, Department of Chemistry, Faculty of Engineering and Technology, NCR Campus, Uttar Pradesh, 201204 IndiaSearch for more papers by this authorPrashant Singh, Prashant Singh University of Delhi, Atma Ram Sanatan Dharma College, Department of Chemistry, Dhaula Kuan, Delhi, 110021 IndiaSearch for more papers by this author Book Editor(s):Dakeshwar Kumar Verma, Dakeshwar Kumar Verma Govt. Digvijay Autonomous Postgraduate College, Department of Chemistry, Rajnandgaon, 491441 Chhattisgarh, IndiaSearch for more papers by this authorChandrabhan Verma, Chandrabhan Verma Khalifa University of Science and Technology, Department of Chemical Engineering, P.O. Box, Abu Dhabi, 127788 United Arab EmiratesSearch for more papers by this authorPaz Otero Fuertes, Paz Otero Fuertes University of Vigo Faculty of Food Science and Technology, Analytical and Food Chemistry Department, Ourense, 32004 SpainSearch for more papers by this author First published: 28 March 2024 https://doi.org/10.1002/9783527844494.ch5 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Microwave- and ultrasound-assisted coupling reactions have emerged as highly influential techniques in the realm of synthetic chemistry, presenting a significant breakthrough in the field of organic synthesis. These innovative methods leverage the distinctive characteristics of high-frequency microwaves and sound waves to accelerate and enhance the efficiency of various coupling processes. This chapter offers a comprehensive overview of recent research endeavors that have employed microwave and ultrasound irradiation for coupling reactions, resulting in notable improvements such as increased yields and reduced reaction times. These techniques have demonstrated exceptional advantages compared to conventional approaches, encompassing elevated reaction rates, enhanced yields, and the capacity to perform reactions under milder conditions. The chapter delves into the fundamental principles underlying microwave- and ultrasound-assisted coupling reactions, emphasizing the pivotal role of microwave heating and acoustic cavitation in stimulating bond activation and facilitating coupling processes. Furthermore, it explores the influence of solvents on these reactions and the wide-ranging applicability of microwave- and ultrasound-assisted techniques to diverse coupling reactions. Concluding the chapter, future prospects and potential advancements in the field are discussed, underscoring the promising role of microwave- and ultrasound-assisted coupling reactions in advancing the domain of synthetic chemistry. References De Souza , L.F. , Silva , L.C. , Oliveira , B.L. , and Antunes , O.A.C. ( 2008 ). Microwave- and ultrasound-assisted Suzuki – Miyaura cross-coupling reactions catalyzed by Pd/PVP . Tetrahedron Lett. 49 : 3895 – 3898 . https://doi.org/10.1016/j.tetlet.2008.04.061 . 10.1016/j.tetlet.2008.04.061 CASWeb of Science®Google Scholar Dhanush , P.C. , Veetil , P. , and Anilkumar , G. ( 2021 ). Microwave assisted C-H activation reaction: an overview . Tetrahedron 105 ( 2022 ): 132614 . https://doi.org/10.1016/j.tet.2021.132614 . 10.1016/j.tet.2021.132614 Google Scholar Gawande , M.B. , Shelke , S.N. , Zboril , R. , and Varma , R.S. ( 2014 ). Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics . Acc. Chem. Res. 47 ( 4 ): 1338 – 1348 . https://doi.org/10.1021/ar400309b . 10.1021/ar400309b CASPubMedWeb of Science®Google Scholar Mittersteiner , M. , Farias , F.F.S. , Bonacorso , H.G. et al. ( 2021 ). Ultrasonics sonochemistry ultrasound-assisted synthesis of pyrimidines and their fused derivatives: a review . Ultrason. Sonochem. 79 ( July ): 105683 . https://doi.org/10.1016/j.ultsonch.2021.105683 . 10.1016/j.ultsonch.2021.105683 PubMedGoogle Scholar Kaping , S. , Daioo , H. , Bankynmaw , L. , and Kandasamy , A. ( 2023 ). Ultrasound assisted regioselective synthesis of novel adamantyl-pyrazolo [1,5- a ] pyrimidines in aqueous media and molecular docking and drug likeness studies . J. Mol. Struct. 1288 ( November ): 135766 . https://doi.org/10.1016/j.molstruc.2023.135766 . 10.1016/j.molstruc.2023.135766 CASGoogle Scholar Al-mutairi , A.A. , El-baih , F.E.M. , and Al-hazimi , H.M. ( 2009 ). Microwave versus ultrasound assisted synthesis of some new heterocycles based on pyrazolone moiety . JSCS 14 ( 3 ): 287 – 299 . https://doi.org/10.1016/j.jscs.2010.02.010 . 10.1016/j.jscs.2010.02.010 Google Scholar Borah , B. , Dwivedi , K.D. , Kumar , B. , and Chowhan , L.R. ( 2021 ). Recent advances in the microwave- and ultrasound-assisted green synthesis of coumarin-heterocycles . Arabian J. Chem. 15 ( 3 ): 103654 . https://doi.org/10.1016/j.arabjc.2021.103654 . 10.1016/j.arabjc.2021.103654 Google Scholar Yousaf , M. , Zahoor , A.F. , Akhtar , R. et al. ( 2020 ). Development of green methodologies for Heck, Chan–Lam, Stille and Suzuki cross-coupling reactions . Mol. Diversity 24 ( 3 ): 821 – 839 . https://doi.org/10.1007/s11030-019-09988-7 . 10.1007/s11030-019-09988-7 CASPubMedGoogle Scholar Jo , S. , Kang , B. , and Jung , J.-W. ( 2023 ). Microwave-assisted Cu-catalyzed diaryletherification for facile synthesis of bioactive prenylated diresorcinols . Molecules 28 ( 1 ). https://doi.org/10.3390/molecules28010062 . 10.3390/molecules28010062 Google Scholar Damera , T. , Pagadala , R. , Rana , S. , and Jonnalagadda , S.B. ( 2023 ). A concise review of multicomponent reactions using novel heterogeneous catalysts under microwave irradiation . Catalysts 13 ( 7 ). https://doi.org/10.3390/catal13071034 . 10.3390/catal13071034 Google Scholar Martina , K. , Cravotto , G. , and Varma , R.S. ( 2021 ). Impact of microwaves on organic synthesis and strategies toward flow processes and scaling up . J. Organomet. Chem. 86 ( 20 ): 13857 – 13872 . https://doi.org/10.1021/acs.joc.1c00865 . 10.1021/acs.joc.1c00865 CASGoogle Scholar Gupta , D. , Jamwal , D. , Rana , D. , and Katoch , A. ( 2018 ). Microwave Synthesized Nanocomposites for Enhancing Oral Bioavailability of Drugs . Elsevier Inc. https://doi.org/10.1016/B978-0-12-813741-3.00027-3 . 10.1016/B978-0-12-813741-3.00027-3 Google Scholar Pal , A. and Gayen , K.S. ( 2021 ). The impact of microwave irradiation reaction in medicinal chemistry: a review . Orient. J. Chem. 37 ( 1 ): 01 – 24 . https://doi.org/10.13005/ojc/370101 . 10.13005/ojc/370101 CASGoogle Scholar Izza , H.F. , Susanti , D.Y. , Mariyam , S. , and Saputro , A.D. ( 2023 ). Performance of microwave-assisted extraction of proanthocyanidins from red sorghum grain in various power and citric acid concentration . J. Saudi Soc. Agric. Sci. https://doi.org/10.1016/j.jssas.2023.05.002 . 10.1016/j.jssas.2023.05.002 PubMedGoogle Scholar Kang , J. , Ko , Y. , Kim , J.P. et al. ( 2023 ). Microwave-assisted design of nanoporous graphene membrane for ultrafast and switchable organic solvent nanofiltration . Nat. Commun. 14 ( 1 ): 901 . https://doi.org/10.1038/s41467-023-36524-x . 10.1038/s41467-023-36524-x CASPubMedGoogle Scholar Das , A. , Roy , H. , and Ansary , I. ( 2018 ). Microwave-assisted, one-pot three-component synthesis of 6-(pyrrolyl) coumarin/quinolone derivatives catalyzed by In(III) chloride . ChemistrySelect 3 ( 33 ): 9592 – 9595 . https://doi.org/10.1002/slct.201801931 . 10.1002/slct.201801931 CASWeb of Science®Google Scholar Dolšak , A. , Mrgole , K. , and Sova , M. ( 2021 ). Microwave-assisted regioselective suzuki coupling of 2,4-dichloropyrimidines with aryl and heteroaryl boronic acids . Catalysts 11 ( 4 ). https://doi.org/10.3390/catal11040439 . 10.3390/catal11040439 Google Scholar Mishra , R. , Jana , A. , Panday , A.K. , and Choudhury , L.H. ( 2018 ). Synthesis of fused pyrroles containing 4-hydroxycoumarins by regioselective metal-free multicomponent reactions . Org. Biomol. Chem. 16 ( 17 ): 3289 – 3302 . https://doi.org/10.1039/c8ob00161h . 10.1039/C8OB00161H CASPubMedGoogle Scholar Breugst , M. and Reissig , H.U. ( 2020 ). The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition . Angew. Chem. Int. Ed. 59 ( 30 ): 12293 – 12307 . https://doi.org/10.1002/anie.202003115 . 10.1002/anie.202003115 CASPubMedWeb of Science®Google Scholar Shaikh , S.K.J. , Kamble , R.R. , Bayannavar , P.K. et al. ( 2020 ). Triazolothiadizepinylquinolines as potential MetAP-2 and NMT inhibitors: microwave-assisted synthesis, pharmacological evaluation and molecular docking studies . J. Mol. Struct. 1203 : 127445 . https://doi.org/10.1016/j.molstruc.2019.127445 . 10.1016/j.molstruc.2019.127445 Google Scholar Saptal , V.B. , Saptal , M.V. , Mane , R.S. et al. ( 2019 ). Amine-functionalized graphene oxide-stabilized Pd nanoparticles (Pd@APGO): a novel and efficient catalyst for the Suzuki and carbonylative Suzuki-Miyaura coupling reactions . ACS Omega 4 ( 1 ): 643 – 649 . https://doi.org/10.1021/acsomega.8b03023 . 10.1021/acsomega.8b03023 CASPubMedGoogle Scholar Akiyama , T. , Taniguchi , T. , Saito , N. et al. ( 2017 ). Ligand-free Suzuki–Miyaura coupling using ruthenium(0) nanoparticles and a continuously irradiating microwave system . Green Chem. 19 ( 14 ): 3357 – 3369 . https://doi.org/10.1039/C7GC01166K . 10.1039/C7GC01166K CASGoogle Scholar Vo , D.D. and Elofsson , M. ( 2017 ). Synthesis of 4-formyl-2-arylbenzofuran derivatives by PdCl(C 3 H 5 )dppb-catalyzed tandem Sonogashira coupling-cyclization under microwave irradiation - application to the synthesis of viniferifuran analogues . ChemistrySelect 2 ( 22 ): 6245 – 6248 . https://doi.org/10.1002/slct.201701490 . 10.1002/slct.201701490 CASWeb of Science®Google Scholar Raimondi , M.V. , Presentato , A. , Li Petri , G. et al. ( 2020 ). New synthetic nitro-pyrrolomycins as promising antibacterial and anticancer agents . Antibiotics 9 ( 6 ). https://doi.org/10.3390/antibiotics9060292 . 10.3390/antibiotics9060292 Google Scholar Li Petri , G. , Spanò , V. , Spatola , R. et al. ( 2020 ). Bioactive pyrrole-based compounds with target selectivity . Eur. J. Med. Chem. 208 : 112783 . https://doi.org/10.1016/j.ejmech.2020.112783 . 10.1016/j.ejmech.2020.112783 PubMedGoogle Scholar Yadagiri , D. , Rivas , M. , and Gevorgyan , V. ( 2020 ). Denitrogenative transformations of pyridotriazoles and related compounds: synthesis of N-containing heterocyclic compounds and beyond . J. Organomet. Chem. 85 ( 17 ): 11030 – 11046 . https://doi.org/10.1021/acs.joc.0c01652 . 10.1021/acs.joc.0c01652 CASGoogle Scholar Sayed , G.H. , Azab , M.E. , and Anwer , K.E. ( 2019 ). Conventional and microwave-assisted synthesis and biological activity study of novel heterocycles containing pyran moiety . J. Heterocyclic Chem. 56 ( 8 ): 2121 – 2133 . https://doi.org/10.1002/jhet.3606 . 10.1002/jhet.3606 CASWeb of Science®Google Scholar Filho , E.V. , Pina , J.W. , Antoniazi , M.K. et al. ( 2021 ). Synthesis, docking, machine learning and antiproliferative activity of the 6-ferrocene/heterocycle-2-aminopyrimidine and 5-ferrocene-1 H -Pyrazole derivatives obtained by microwave-assisted Atwal reaction as potential anticancer agents . Bioorg. Med. Chem. Lett. 48 : 128240 . https://doi.org/10.1016/j.bmcl.2021.128240 . 10.1016/j.bmcl.2021.128240 PubMedGoogle Scholar Zhou , D. , Pong To , W. , Tong , G. et al. ( 2020 ). Tetradentate Gold(III) complexes as thermally activated delayed fluorescence (TADF) emitters: microwave-assisted synthesis and high-performance OLEDs with long operational lifetime . Angew. Chem. 59 : 6375 – 6382 . https://doi.org/10.1002/anie.201914661 . 10.1002/anie.201914661 CASPubMedWeb of Science®Google Scholar Shyamlal , B.R.K. , Mathur , M. , Yadav , D.K. , and Chaudhary , S. ( 2020 ). Microwave-assisted modified synthesis of C8-analogues of naturally occurring methylxanthines: synthesis, biological evaluation and their practical applications . Fitoterapia 143 : 104533 . https://doi.org/10.1016/j.fitote.2020.104533 . 10.1016/j.fitote.2020.104533 PubMedGoogle Scholar Bora , D. , Tokala , R. , John , S.E. et al. ( 2020 ). β-Carboline directed regioselective hydroxylation by employing Cu(OAc) 2 and mechanistic investigation by ESI-MS . Org. Biomol. Chem. 18 ( 12 ): 2307 – 2311 . https://doi.org/10.1039/d0ob00250j . 10.1039/D0OB00250J CASPubMedGoogle Scholar Zhang , M. , Ding , Y. , Qin , H.X. et al. ( 2020 ). One-pot synthesis of substituted pyrrole–imidazole derivatives with anticancer activity . Mol. Diversity 24 ( 4 ): 1177 – 1184 . https://doi.org/10.1007/s11030-019-09982-z . 10.1007/s11030-019-09982-z CASPubMedGoogle Scholar Khormi , A.Y. , Farghaly , T.A. , and Shaaban , M.R. ( 2020 ). New palladium(II)-complex based on nitrogen rich ligand efficient precatalyst for C–C cross-coupling in water under microwaves irradiation . J. Inorg. Organomet. Polym. Mater. 30 ( 12 ): 5133 – 5147 . https://doi.org/10.1007/s10904-020-01620-8 . 10.1007/s10904-020-01620-8 CASGoogle Scholar Shaikh , S.K.J. , Sannaikar , M.S. , and Kumbar , M.N. ( 2018 ). Microwave-expedited green synthesis, photophysical, computational studies of anticancer activity . ChemistrySelect 4448 – 4462 . https://doi.org/10.1002/slct.201702596 . 10.1002/slct.201702596 Google Scholar Muthusaravanan , S. , Teju , E. , and Thangamani , A. ( 2019 ). A greener and microwave-mediated synthesis and spectral studies of β-aminomethylhydroxylcoumarins . Chem. Data Collect. 20 : 100199 . https://doi.org/10.1016/j.cdc.2019.100199 . 10.1016/j.cdc.2019.100199 Google Scholar Katla , R. and Katla , R. ( 2022 ). Microwave assisted C–S cross-coupling reaction from thiols and 2-(4-bromo phenyl)-benzothiazole employed by CuI in acetonitrile . New J. Chem. 46 ( 29 ): 13918 – 13923 . https://doi.org/10.1039/D2NJ02065C . 10.1039/D2NJ02065C CASGoogle Scholar Breeden , S.W. , Clark , J.H. , Farmer , T.J. et al. ( 2013 ). Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural . Green Chem. 15 ( 1 ): 72 – 75 . https://doi.org/10.1039/C2GC36290B . 10.1039/C2GC36290B CASWeb of Science®Google Scholar Mao , Y. , Yang , S. , and Xue , C. ( 2018 ). Subject category: subject areas: rapid degradation of malachite green by CoFe 2 O 4 – SiC foam under microwave radiation . R. Soc. Open Sci. 5 ( 6 ): 180085 . 10.1098/rsos.180085 PubMedGoogle Scholar Robinson , B. , Caiola , A. , Bai , X. et al. ( 2020 ). Catalytic direct conversion of ethane to value-added chemicals under microwave irradiation . Catal. Today 356 : 3 – 10 . https://doi.org/10.1016/j.cattod.2020.03.001 . 10.1016/j.cattod.2020.03.001 CASGoogle Scholar Suttisawat , Y. , Sakai , H. , Abe , M. et al. ( 2012 ). Microwave effect in the dehydrogenation of tetralin and decalin with a fixed-bed reactor . Int. J. Hydrogen Energy 37 : 3242 – 3250 . https://doi.org/10.1016/j.ijhydene.2011.10.111 . 10.1016/j.ijhydene.2011.10.111 CASWeb of Science®Google Scholar Horikoshi , S. , Kamata , M. , Mitani , T. , and Serpone , N. ( 2014 ). Control of microwave-generated hot spots. 6. Generation of hot spots in dispersed catalyst particulates and factors that affect catalyzed organic syntheses in heterogeneous media . Ind. Eng. Chem. Res. 53 ( 39 ): 14941 – 14947 . https://doi.org/10.1021/ie502169z . 10.1021/ie502169z CASWeb of Science®Google Scholar Penteado , F. , Monti , B. , Sancineto , L. et al. ( 2018 ). Ultrasound-assisted multicomponent reactions, organometallic and organochalcogen chemistry . Asian J. Org. Chem. 7 ( 12 ): 2368 – 2385 . https://doi.org/10.1002/AJOC.201800477 . 10.1002/ajoc.201800477 CASGoogle Scholar Baig , R.B.N. and Varma , R.S. ( 2012 ). Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis . Chem. Soc. Rev. 41 ( 4 ): 1559 – 1584 . https://doi.org/10.1039/C1CS15204A . 10.1039/C1CS15204A CASPubMedWeb of Science®Google Scholar Banakar , V.V. , Sabnis , S.S. , Gogate , P.R. et al. ( 2022 ). Ultrasound assisted continuous processing in microreactors with focus on crystallization and chemical synthesis: a critical review . Chem. Eng. Res. Des. 182 : 273 – 289 . https://doi.org/10.1016/J.CHERD.2022.03.049 . 10.1016/j.cherd.2022.03.049 CASGoogle Scholar Ghamari Kargar , P. , Len , C. , and Luque , R. ( 2022 ). Cu/cellulose-modified magnetite nanocomposites as a highly active and selective catalyst for ultrasound-promoted aqueous O-arylation Ullmann and sp-sp2 Sonogashira cross-coupling reactions . Sustainable Chem. Pharm. 27 : 100672 . https://doi.org/10.1016/J.SCP.2022.100672 . 10.1016/J.SCP.2022.100672 Google Scholar El-bendary , M.M. , Saleh , T.S. , and Al-Bogami , A.S. ( 2021 ). Synthesis and structural characterization of a palladium complex as an anticancer agent, and a highly efficient and reusable catalyst for the Heck coupling reaction under ultrasound irradiation: a convenient sustainable green protocol . Polyhedron 194 : 114924 . https://doi.org/10.1016/J.POLY.2020.114924 . 10.1016/j.poly.2020.114924 Google Scholar Wang , J. , Wang , X. , Liu , X. et al. ( 2022 ). Efficient and solvent-free oxidation coupling of amines to imines using persulfate as oxidant with ultrasound assistance . Polycyclic Aromat. Compd. 42 ( 9 ): 6282 – 6289 . https://doi.org/10.1080/10406638.2021.1977350 . 10.1080/10406638.2021.1977350 CASGoogle Scholar Veisi , H. , Joshani , Z. , Karmakar , B. et al. ( 2021 ). Ultrasound assisted synthesis of Pd NPs decorated chitosan-starch functionalized Fe 3 O 4 nanocomposite catalyst towards Suzuki–Miyaura coupling and reduction of 4-nitrophenol . Int. J. Biol. Macromol. 172 : 104 – 113 . https://doi.org/10.1016/J.IJBIOMAC.2021.01.040 . 10.1016/j.ijbiomac.2021.01.040 CASPubMedGoogle Scholar Ganapathisivaraja , P. , Rao , G.V. , Ramarao , A. et al. ( 2022 ). Ultrasound assisted Cu-catalyzed decarbonylative Sonogashira coupling-cyclization strategy: synthesis and evaluation of 3-heteroarylmethylene isoindolin-1-ones against SIRT1 . J. Mol. Struct. 1250 : 131788 . https://doi.org/10.1016/J.MOLSTRUC.2021.131788 . 10.1016/j.molstruc.2021.131788 Google Scholar Kumar , J.S. , Reddy , G.S. , Medishetti , R. et al. ( 2022 ). Ultrasound assisted one-pot synthesis of rosuvastatin based novel azaindole derivatives via coupling–cyclization strategy under Pd/Cu-catalysis: their evaluation as potential cytotoxic agents . Bioorg. Chem. 124 : 105857 . https://doi.org/10.1016/J.BIOORG.2022.105857 . 10.1016/j.bioorg.2022.105857 PubMedGoogle Scholar Manikanttha , M. , Deepti , K. , Tej , M.B. et al. ( 2023 ). Ultrasound assisted Cu-catalyzed Ullmann-Goldberg type coupling-cyclization in a single pot: synthesis and in silico evaluation of 11 H -pyrido[2,1- b ]quinazolin-11-ones against SARS-CoV-2 RdRp . J. Mol. Struct. 1280 : 135044 . https://doi.org/10.1016/J.MOLSTRUC.2023.135044 . 10.1016/j.molstruc.2023.135044 PubMedGoogle Scholar Ying , S. , Liu , X. , Guo , T. et al. ( 2022 ). Ultrasound-assisted bromination of indazoles at the C3 position with dibromohydantoin . RSC Adv. 13 ( 1 ): 581 – 585 . https://doi.org/10.1039/d2ra06867b . 10.1039/D2RA06867B PubMedGoogle Scholar Meeniga , I. , Gokanapalli , A. , and Peddiahgari , V.G.R. ( 2022 ). Synthesis of environmentally benign new ionic liquids for the preparation of 2-aryl/heteroaryl benzimidazoles/benzoxazoles under ultrasonication . Sustainable Chem. Pharm. 30 : 100874 . https://doi.org/10.1016/j.scp.2022.100874 . 10.1016/j.scp.2022.100874 Google Scholar Sreenivasulu , T. , Reddy , G.M. , Sravya , G. et al. ( 2019 ). Synthesis, characterization and antimicrobial activity of pyridine linked hydrazinyl oxazoles/imidazoles . AIP Conf. Proc. 2063 ( January ): 1 – 6 . https://doi.org/10.1063/1.5087387 . 10.1063/1.5087387 Google Scholar Venkateshwarlu , R. , Nath Singh , S. , Siddaiah , V. et al. ( 2019 ). Ultrasound assisted one-pot synthesis of 1,2-diaryl azaindoles via Pd/C-Cu catalysis: identification of potential cytotoxic agents . Tetrahedron Lett. 60 ( 52 ): 151326 . https://doi.org/10.1016/j.tetlet.2019.151326 . 10.1016/j.tetlet.2019.151326 Google Scholar Shahinshavali , S. , Hossain , K.A. , Kumar , A.V. et al. ( 2020 ). Ultrasound assisted synthesis of 3-alkynyl substituted 2-chloroquinoxaline derivatives: their in silico assessment as potential ligands for N-protein of SARS-CoV-2 . Tetrahedron Lett. 61 ( 40 ): 152336 . https://doi.org/10.1016/J.TETLET.2020.152336 . 10.1016/j.tetlet.2020.152336 CASPubMedGoogle Scholar Verma , D. , Sharma , V. , Jain , S. , and Singh Okram , G. ( 2020 ). Ultrasound-assisted synthesis of 1,8-dioxodecahydroacridine derivatives in presence of Ag doped CdS nanocatalyst . J. Dispersion Sci. Technol. 41 ( 8 ): 1145 – 1158 . https://doi.org/10.1080/01932691.2019.1614460 . 10.1080/01932691.2019.1614460 CASGoogle Scholar Safari , J. , Tavakoli , M. , and Ghasemzadeh , M.A. ( 2019 ). Ultrasound-promoted an efficient method for the one-pot synthesis of indeno fused pyrido[2,3- d ]pyrimidines catalyzed by H 3 PW 12 O 40 functionalized chitosan@Co 3 O 4 as a novel and green catalyst . J. Organomet. Chem. 880 : 75 – 82 . https://doi.org/10.1016/J.JORGANCHEM.2018.10.028 . 10.1016/j.jorganchem.2018.10.028 CASWeb of Science®Google Scholar Green Chemical Synthesis with Microwaves and Ultrasound ReferencesRelatedInformation
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
1
2
|
|
|
Journal of Heterocyclic Chemistry
2 publications, 100%
|
|
|
1
2
|
Publishers
|
1
2
|
|
|
Wiley
2 publications, 100%
|
|
|
1
2
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
2
Total citations:
2
Citations from 2024:
2
(100%)