Advanced Optical Materials

Dispersion‐Compensated Terahertz Ultra‐Broadband Quarter and Half Wave Plates in a Dielectric‐Metal Hybrid Metadevice

Publication typeJournal Article
Publication date2024-01-15
scimago Q1
SJR2.216
CiteScore13.7
Impact factor8
ISSN21951071
Electronic, Optical and Magnetic Materials
Atomic and Molecular Physics, and Optics
Abstract

Manipulating terahertz (THz) polarization in an efficient and broadband manner is of great significance to facilitating THz applications, including communications, imaging, defense, and homeland security. In this work, a dispersion compensation scheme is proposed for high‐efficiency and ultra‐broadband THz polarization manipulation using an anisotropic dielectric‐metal hybrid metadevice. The operating bandwidth is broadened by dispersion compensation, where the dielectric grating provides an artificial birefringence with a phase dispersion of positive slope and the metallic grating provides a phase dispersion of negative slope. Experimental results show that the device achieves two ultra‐broadband dispersion compensation, corresponding to the achromatic quarter‐wave plate in the lower frequency band (QWP: 0.5–2.0 THz, PCR >0.95) and the achromatic half‐wave plate in the higher frequency band (HWP: 1.0–2.1 THz, PCR >0.9), respectively. Theoretically, the bandwidth of QWP can be further improved to 2.6 THz by optimizing the grating dispersion, which brings huge application space to cover most of the THz radiation. This hybrid metadevice configuration offers a versatile platform for engineering electromagnetic waves, and the strategy of phase compensation can be generalized to extend the bandwidth of the metadevice in imaging and communications.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?