Open Access
Open access
Advanced Science, volume 11, issue 20

Laser‐Synthesized Germanium Nanoparticles as Biodegradable Material for Near‐Infrared Photoacoustic Imaging and Cancer Phototherapy

Iaroslav B Belyaev 1, 2
Ivan V Zelepukin 1, 3
Polina A Kotelnikova 1
Gleb V. Tikhonowski 2
Alina Yu Kapitannikova 4
Jugal Barman 1
Alexey N Kopylov 2
Sergey M Deyev 1, 2, 4
A. V. Zvyagin 1, 4, 7
Show full list: 13 authors
Publication typeJournal Article
Publication date2024-03-22
Journal: Advanced Science
scimago Q1
SJR3.914
CiteScore18.9
Impact factor14.3
ISSN21983844
Medicine (miscellaneous)
General Chemical Engineering
General Physics and Astronomy
General Materials Science
General Engineering
Biochemistry, Genetics and Molecular Biology (miscellaneous)
Abstract

Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond‐laser ablation in liquids rapidly dissolve in physiological‐like environment through the oxidation mechanism. The biodegradation of Ge nanoparticles is preserved in tumor cells in vitro and in normal tissues in mice with a half‐life as short as 3.5 days. Biocompatibility of Ge NPs is confirmed in vivo by hematological, biochemical, and histological analyses. Strong optical absorption of Ge in the near‐infrared spectral range enables photothermal treatment of engrafted tumors in vivo, following intravenous injection of Ge NPs. The photothermal therapy results in a 3.9‐fold reduction of the EMT6/P adenocarcinoma tumor growth with significant prolongation of the mice survival. Excellent mass‐extinction of Ge NPs (7.9 L g−1 cm−1 at 808 nm) enables photoacoustic imaging of bones and tumors, following intravenous and intratumoral administrations of the nanomaterial. As such, strongly absorbing near‐infrared‐light biodegradable Ge nanomaterial holds promise for advanced theranostics.

Found 
Found 

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?