Open Access
Open access
том 8 издание 4 страницы 2101000

Vertical Thin Film Transistor Based on Conductivity Modulation of Graphene Electrode by Micro‐Hole Patterning

Тип публикацииJournal Article
Дата публикации2021-12-22
scimago Q1
wos Q1
БС1
SJR1.478
CiteScore10.7
Impact factor5.3
ISSN2199160X
Electronic, Optical and Magnetic Materials
Краткое описание
The vertical thin film transistor (VTFT) has several advantages over the planar thin film transistor, such as a high current density and low operating voltage, because of the structural specificity. However, it is difficult to realize transistor operation in a VTFT because of the structural limitation that the gate field is blocked. As a solution, the conductivity modulation of a graphene electrode is studied with a micro-hole structure as a gate field transfer electrode. The micro-hole array pattern in the graphene allows better penetration of the gate field to junction and the work function to be modulated. Moreover, the patterning induces a doping effect on the graphene which results in a high barrier at the p–n junction and improves the conductivity in the device operation. The optimum performance is shown at 5 µm hole size and 30% hole ratio by analyzing the hole size and the area ratio. The proposed structure shows about 20 times higher on-current than a planar transistor with a same active area. Compared to a VTFT using simple graphene working function modulation, the proposed structure has an on-state current that is ten times higher and off-state current that is reduced 50%, and therefore has an improved on–off ratio.
Найдено 
Найдено 

Топ-30

Журналы

1
Applied Physics Letters
1 публикация, 16.67%
ACS Omega
1 публикация, 16.67%
Sensors and Actuators, A: Physical
1 публикация, 16.67%
Chinese Science Bulletin (Chinese Version)
1 публикация, 16.67%
ACS applied materials & interfaces
1 публикация, 16.67%
Analysis & Sensing
1 публикация, 16.67%
1

Издатели

1
2
American Chemical Society (ACS)
2 публикации, 33.33%
AIP Publishing
1 публикация, 16.67%
Elsevier
1 публикация, 16.67%
Science in China Press
1 публикация, 16.67%
Wiley
1 публикация, 16.67%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Поделиться
Цитировать
ГОСТ |
Цитировать
Pyo G. et al. Vertical Thin Film Transistor Based on Conductivity Modulation of Graphene Electrode by Micro‐Hole Patterning // Advanced Electronic Materials. 2021. Vol. 8. No. 4. p. 2101000.
ГОСТ со всеми авторами (до 50) Скопировать
Pyo G., Lee G., Lee S., Yang J. H., Heo S. J., Choi G. H., Cha S., Jang J. Vertical Thin Film Transistor Based on Conductivity Modulation of Graphene Electrode by Micro‐Hole Patterning // Advanced Electronic Materials. 2021. Vol. 8. No. 4. p. 2101000.
RIS |
Цитировать
TY - JOUR
DO - 10.1002/aelm.202101000
UR - https://doi.org/10.1002/aelm.202101000
TI - Vertical Thin Film Transistor Based on Conductivity Modulation of Graphene Electrode by Micro‐Hole Patterning
T2 - Advanced Electronic Materials
AU - Pyo, Goeun
AU - Lee, Gwang-Jun
AU - Lee, Seungchul
AU - Yang, Jae Hoon
AU - Heo, Su Jin
AU - Choi, Gyeong Hyeon
AU - Cha, SeungNam
AU - Jang, Jae-Won
PY - 2021
DA - 2021/12/22
PB - Wiley
SP - 2101000
IS - 4
VL - 8
SN - 2199-160X
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Pyo,
author = {Goeun Pyo and Gwang-Jun Lee and Seungchul Lee and Jae Hoon Yang and Su Jin Heo and Gyeong Hyeon Choi and SeungNam Cha and Jae-Won Jang},
title = {Vertical Thin Film Transistor Based on Conductivity Modulation of Graphene Electrode by Micro‐Hole Patterning},
journal = {Advanced Electronic Materials},
year = {2021},
volume = {8},
publisher = {Wiley},
month = {dec},
url = {https://doi.org/10.1002/aelm.202101000},
number = {4},
pages = {2101000},
doi = {10.1002/aelm.202101000}
}
MLA
Цитировать
Pyo, Goeun, et al. “Vertical Thin Film Transistor Based on Conductivity Modulation of Graphene Electrode by Micro‐Hole Patterning.” Advanced Electronic Materials, vol. 8, no. 4, Dec. 2021, p. 2101000. https://doi.org/10.1002/aelm.202101000.