Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective
Maximilian Fichtner
1, 2
,
Kristina Edström
3, 4
,
Elixabete Ayerbe
5
,
Maitane Berecibar
6
,
Arghya Bhowmik
7
,
Ivano Castelli
7
,
Simon Clark
8
,
Robert Dominko
4, 9, 10
,
Merve Erakca
1, 11
,
Alejandro A. Franco
12, 13, 14
,
Alexis Grimaud
3, 15
,
Birger Horstmann
6
,
Arnulf Latz
16, 17
,
Henning Lorrmann
18
,
Marcel Meeus
19
,
Rekha Narayan
9
,
Frank Pammer
1
,
Janna Ruhland
20
,
Helge Sören Stein
1, 21
,
Tejs Vegge
7
,
Marcel Weil
1, 11
4
ALISTORE‐European Research Institute FR CNRS 3104, Hub de l'Energie, 15 Rue Baudelocque Amiens Cedex 80039 France
|
5
CIDETEC Basque Research and Technology Alliance (BRTA) Paseo Miramón 196 Donostia‐San Sebastián 20014 Spain
|
8
SINTEF Industry New Energy Solutions Sem Sælands vei 12 Trondheim 7034 Norway
|
17
19
EMIRI – Energy Materials Industrial Research Initiative Rue de Ransbeek 310 Brussels B‐1120 Belgium
|
Publication type: Journal Article
Publication date: 2021-12-05
scimago Q1
wos Q1
SJR: 8.378
CiteScore: 40.7
Impact factor: 26.0
ISSN: 16146832, 16146840
General Materials Science
Renewable Energy, Sustainability and the Environment
Abstract
The development of new batteries has historically been achieved through discovery and development cycles based on the intuition of the researcher, followed by experimental trial and error—often helped along by serendipitous breakthroughs. Meanwhile, it is evident that new strategies are needed to master the ever-growing complexity in the development of battery systems, and to fast-track the transfer of findings from the laboratory into commercially viable products. This review gives an overview over the future needs and the current state-of-the art of five research pillars of the European Large-Scale Research Initiative BATTERY 2030+, namely 1) Battery Interface Genome in combination with a Materials Acceleration Platform (BIG-MAP), progress toward the development of 2) self-healing battery materials, and methods for operando, 3) sensing to monitor battery health. These subjects are complemented by an overview over current and up-coming strategies to optimize 4) manufacturability of batteries and efforts toward development of a circular battery economy through implementation of 5) recyclability aspects in the design of the battery.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
2
4
6
8
10
12
14
16
|
|
|
Journal of Energy Storage
15 publications, 5.15%
|
|
|
Advanced Energy Materials
13 publications, 4.47%
|
|
|
Small
10 publications, 3.44%
|
|
|
Journal of Materials Chemistry A
8 publications, 2.75%
|
|
|
Journal of Power Sources
8 publications, 2.75%
|
|
|
Energy Storage Materials
8 publications, 2.75%
|
|
|
Batteries & Supercaps
7 publications, 2.41%
|
|
|
Advanced Materials
7 publications, 2.41%
|
|
|
Batteries
5 publications, 1.72%
|
|
|
Chemical Engineering Journal
5 publications, 1.72%
|
|
|
ACS Applied Energy Materials
4 publications, 1.37%
|
|
|
Energies
4 publications, 1.37%
|
|
|
Advanced Science
4 publications, 1.37%
|
|
|
ACS applied materials & interfaces
4 publications, 1.37%
|
|
|
Journal of Energy Chemistry
4 publications, 1.37%
|
|
|
Physical Chemistry Chemical Physics
4 publications, 1.37%
|
|
|
Electrochimica Acta
3 publications, 1.03%
|
|
|
ACS Sustainable Chemistry and Engineering
3 publications, 1.03%
|
|
|
ACS Energy Letters
3 publications, 1.03%
|
|
|
Energy & Environmental Materials
3 publications, 1.03%
|
|
|
Inorganic Chemistry
3 publications, 1.03%
|
|
|
Advanced Functional Materials
3 publications, 1.03%
|
|
|
Matter
3 publications, 1.03%
|
|
|
ChemSusChem
3 publications, 1.03%
|
|
|
Nano-Micro Letters
2 publications, 0.69%
|
|
|
npj Computational Materials
2 publications, 0.69%
|
|
|
eScience
2 publications, 0.69%
|
|
|
Energy
2 publications, 0.69%
|
|
|
Journal of Chemical Physics
2 publications, 0.69%
|
|
|
2
4
6
8
10
12
14
16
|
Publishers
|
10
20
30
40
50
60
70
80
90
100
|
|
|
Elsevier
97 publications, 33.33%
|
|
|
Wiley
72 publications, 24.74%
|
|
|
American Chemical Society (ACS)
30 publications, 10.31%
|
|
|
Royal Society of Chemistry (RSC)
23 publications, 7.9%
|
|
|
Springer Nature
23 publications, 7.9%
|
|
|
MDPI
19 publications, 6.53%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
9 publications, 3.09%
|
|
|
AIP Publishing
5 publications, 1.72%
|
|
|
IOP Publishing
3 publications, 1.03%
|
|
|
The Electrochemical Society
1 publication, 0.34%
|
|
|
Institution of Engineering and Technology (IET)
1 publication, 0.34%
|
|
|
IntechOpen
1 publication, 0.34%
|
|
|
Emerald
1 publication, 0.34%
|
|
|
Cambridge University Press
1 publication, 0.34%
|
|
|
ASME International
1 publication, 0.34%
|
|
|
American Association for the Advancement of Science (AAAS)
1 publication, 0.34%
|
|
|
American Physical Society (APS)
1 publication, 0.34%
|
|
|
10
20
30
40
50
60
70
80
90
100
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
292
Total citations:
292
Citations from 2024:
182
(62.54%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Fichtner M. et al. Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective // Advanced Energy Materials. 2021. Vol. 12. No. 17. p. 2102904.
GOST all authors (up to 50)
Copy
Fichtner M., Edström K., Ayerbe E., Berecibar M., Bhowmik A., Castelli I., Clark S., Dominko R., Erakca M., Franco A. A., Grimaud A., Horstmann B., Latz A., Lorrmann H., Meeus M., Narayan R., Pammer F., Ruhland J., Stein H. S., Vegge T., Weil M. Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective // Advanced Energy Materials. 2021. Vol. 12. No. 17. p. 2102904.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1002/aenm.202102904
UR - https://doi.org/10.1002/aenm.202102904
TI - Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective
T2 - Advanced Energy Materials
AU - Fichtner, Maximilian
AU - Edström, Kristina
AU - Ayerbe, Elixabete
AU - Berecibar, Maitane
AU - Bhowmik, Arghya
AU - Castelli, Ivano
AU - Clark, Simon
AU - Dominko, Robert
AU - Erakca, Merve
AU - Franco, Alejandro A.
AU - Grimaud, Alexis
AU - Horstmann, Birger
AU - Latz, Arnulf
AU - Lorrmann, Henning
AU - Meeus, Marcel
AU - Narayan, Rekha
AU - Pammer, Frank
AU - Ruhland, Janna
AU - Stein, Helge Sören
AU - Vegge, Tejs
AU - Weil, Marcel
PY - 2021
DA - 2021/12/05
PB - Wiley
SP - 2102904
IS - 17
VL - 12
SN - 1614-6832
SN - 1614-6840
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2021_Fichtner,
author = {Maximilian Fichtner and Kristina Edström and Elixabete Ayerbe and Maitane Berecibar and Arghya Bhowmik and Ivano Castelli and Simon Clark and Robert Dominko and Merve Erakca and Alejandro A. Franco and Alexis Grimaud and Birger Horstmann and Arnulf Latz and Henning Lorrmann and Marcel Meeus and Rekha Narayan and Frank Pammer and Janna Ruhland and Helge Sören Stein and Tejs Vegge and Marcel Weil},
title = {Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective},
journal = {Advanced Energy Materials},
year = {2021},
volume = {12},
publisher = {Wiley},
month = {dec},
url = {https://doi.org/10.1002/aenm.202102904},
number = {17},
pages = {2102904},
doi = {10.1002/aenm.202102904}
}
Cite this
MLA
Copy
Fichtner, Maximilian, et al. “Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective.” Advanced Energy Materials, vol. 12, no. 17, Dec. 2021, p. 2102904. https://doi.org/10.1002/aenm.202102904.