Angewandte Chemie, volume 136, issue 3

Boosting H+ Storage in Aqueous Zinc Ion Batteries via Integrating Redox‐Active Sites into Hydrogen‐Bonded Organic Frameworks with Strong π‐π Stacking

Publication typeJournal Article
Publication date2023-11-10
SJR
CiteScore
Impact factor
ISSN00448249, 15213757
General Medicine
Abstract

In the emerging aqueous zinc ion batteries (AZIBs), proton (H+) with the smallest molar mass and fast (de)coordination kinetics is considered as the most ideal charge carrier compared with Zn2+ counterpart, however, searching for new hosting materials for H+ storage is still at its infancy. Herein, redox‐active hydrogen‐bonded organic frameworks (HOFs) assembled from diaminotriazine moiety decorated hexaazatrinnphthalene (HOF‐HATN) are for the first time developed as the stable cathode hosting material for boosting H+ storage in AZIBs. The unique integration of hydrogen‐bonding networks and strong π‐π stacking endow it rapid Grotthuss proton conduction, stable supramolecular structure and inclined H+ storage. As a consequence, HOF‐HATN displays a high capacity (320 mAh g−1 at 0.05 A g−1) and robust cyclability of (>10000 cycles at 5 A g−1) based on three‐step cation coordination storage. These findings get insight into the proton transport and storage behavior in HOFs and provide the molecular engineering strategy for constructing well‐defined cathode hosting materials for rechargeable aqueous batteries.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?