Recent Progress in the Chemistry of Ring‐Fused Azulenes: Synthesis, Reactivity and Properties
Azulene, a non‐alternative aromatic hydrocarbon, has attracted significant attention due to its unique electronic properties, and potential applications in organic electronics and optoelectronics. This review highlights recent advances in the synthesis, reactivity, and functional properties of ring‐fused azulene derivatives. The discussion encompasses classical synthetic routes, including the Ziegler–Hafner and Nozoe methods, as well as novel approaches such as transition metal‐catalyzed cyclizations. Key advancements in the construction of benzo[a]azulenes, naphthoazulenes, and other polycyclic azulene frameworks are detailed, emphasizing their regioselective functionalization and enhanced stability. Moreover, the incorporation of azulene moieties into polycyclic aromatic hydrocarbons (PAHs) and heterocyclic systems is explored, highlighting their potential applications in organic light‐emitting diodes (OLEDs), field‐effect transistors (OFETs), and photovoltaic devices. Special attention is given to azulene‐fused helicenes and nanographenes, which demonstrate promising chiroptical properties and extended π‐conjugation. This review aims to provide a comprehensive overview of the synthetic strategies and emerging applications of azulene‐based compounds, contributing to the development of advanced materials for future electronic and photonic technologies.