Heterologous Expression and Optimization of Fermentation Conditions for Recombinant Ikarugamycin Production
ABSTRACT
Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti‐leukemic, and anti‐inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low‐density lipoprotein uptake in macrophages, Nef‐induced CD4 cell surface downregulation, and mechanisms of endocytosis. It is, therefore, used as a tool compound to study diverse biological processes. However, ikarugamycin commercial prices are very high, with up to 1300 € per 1 mg, thus limiting its application. We, therefore, set out to develop a high‐yielding recombinant production platform of ikarugamycin by screening different expression vectors, recombinant host strains, and cultivation conditions. Overall, this has led to overproduction levels of more than 100 mg/L, which, together with a straightforward purification protocol, establishes biotechnological access to affordable ikarugamycin enabling its increased use in biomedical research in the future.