Biotechnology and Bioengineering

Application of Multiple Base‐Editing Mediated by Polycistronic tRNA‐gRNA‐Processing System in Pig Cells

Wudi Zhao 1, 2
Xiangxing Zhu 2
Huang Guobin 1, 2
Hao Gu 1
Yanzhen Bi 1
Dongsheng Tang 2
Hongyan Ren 1
1
 
Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary Hubei Academy of Agricultural Sciences Wuhan China
Publication typeJournal Article
Publication date2025-01-22
scimago Q2
wos Q2
SJR0.811
CiteScore7.9
Impact factor3.5
ISSN00063592, 10970290
Abstract
ABSTRACT

Gene edited pigs have extensive and important application value in the fields of agriculture and biomedicine. With the increasing demand in medical research and agricultural markets, more and more application scenarios require gene edited pigs to possess two or even more advantageous phenotypes simultaneously. The current production of multi gene edited pigs is inefficient, time‐consuming, and costly, and there is an urgent need to develop efficient and accurate multi gene editing application technologies. The polycistronic tRNA‐gRNA‐processing system (PTG), developed based on endogenous tRNA self‐processing systems, has been shown to exhibit efficient multi gene editing in plants. This study aims to combine a PTG strategy with multiple gRNA production functions with an adenine base editor (ABE) to test its feasibility for efficient and precise multi gene base editing in pig cells. The results indicate that the PTG based integrated ABE plasmid can perform efficient base editing at multiple gene loci in pig cells. And while the gene editing efficiency was significantly improved, no indel and sgRNA dependent off target effects caused by DSB were detected. This work permit will provide a solid foundation for the production of multi gene edited pigs with agricultural and medical applications.

Briski O., La Motta G.E., Ratner L.D., Allegroni F.A., Pillado S., Álvarez G., Gutierrez B., Tarragona L., Zaccagnini A., Acerbo M., Ciampi C., Fernández-Martin R., Salamone D.F.
Theriogenology scimago Q1 wos Q1
2024-05-01 citations by CoLab: 2 Abstract  
Genome editing in pigs for xenotransplantation has seen significant advances in recent years. This study compared three methodologies to generate gene-edited embryos, including co-injection of sperm together with the CRISPR-Cas9 system into oocytes, named ICSI-MGE (mediated gene editing); microinjection of CRISPR-Cas9 components into oocytes followed by in vitro fertilization (IVF), and microinjection of in vivo fertilized zygotes with the CRISPR-Cas9 system. Our goal was to knock-out (KO) porcine genes involved in the biosynthesis of xenoantigens responsible for the hyperacute rejection of interspecific xenografts, namely GGTA1, CMAH, and β4GalNT2. Additionally, we attempted to KO the growth hormone receptor (GHR) gene with the aim of limiting the growth of porcine organs to a size that is physiologically suitable for human transplantation. Embryo development, pregnancy, and gene editing rates were evaluated. We found an efficient mutation of the GGTA1 gene following ICSI-MGE, comparable to the results obtained through the microinjection of oocytes followed by IVF. ICSI-MGE also showed higher rates of biallelic mutations compared to the other techniques. Five healthy piglets were born from in vivo-derived embryos, all of them exhibiting biallelic mutations in the GGTA1 gene, with three displaying mutations in the GHR gene. No mutations were observed in the CMAH and β4GalNT2 genes. In conclusion, in vitro methodologies showed high rates of gene-edited embryos. Specifically, ICSI-MGE proved to be an efficient technique for obtaining homozygous biallelic mutated embryos. Lastly, only live births were obtained from in vivo-derived embryos showing efficient multiple gene editing for GGTA1 and GHR.
Peng W., Gao M., Zhu X., Liu X., Yang G., Li S., Liu Y., Bai L., Yang J., Bao J.
Biotechnology Journal scimago Q1 wos Q2
2024-04-16 citations by CoLab: 1 Abstract  
AbstractCRISPR/Cas9 technology, combined with somatic cell nuclear transplantation (SCNT), represents the primary approach to generating gene‐edited pigs. The inefficiency in acquiring gene‐edited nuclear donors is attributed to low editing and delivery efficiency, both closely linked to the selection of CRISPR/Cas9 forms. However, there is currently no direct method to evaluate the efficiency of CRISPR/Cas9 editing in porcine genomes. A platform based on fluorescence reporting signals and micropattern arrays was developed in this study, to visually assess the efficiency of gene editing. The optimal specifications for culturing porcine cells, determined by the quantity and state of cells grown on micropattern arrays, were a diameter of 200 µm and a spacing of 150 µm. By visualizing the area of fluorescence loss and measuring the gray value of the micropattern arrays, it was quickly determined that the mRNA form targeting porcine cells exhibited the highest editing efficiency compared to DNA and Ribonucleoprotein (RNP) forms of CRISPR/Cas9. Subsequently, four homozygotes of the β4GalNT2 gene knockout were successfully obtained through the mRNA form, laying the groundwork for the subsequent generation of gene‐edited pigs. This platform facilitates a quick, simple, and effective evaluation of gene knockout efficiency. Additionally, it holds significant potential for swiftly testing novel gene editing tools, assessing delivery methods, and tailoring evaluation platforms for various cell types.
Wartalski K., Wiater J., Maciak P., Pastuła A., Lis G.J., Samiec M., Trzcińska M., Duda M.
2024-02-29 citations by CoLab: 6 PDF Abstract  
Boldenone (Bdn) and nandrolone (Ndn) are anabolic androgenic steroids (AASs) that, as our previous studies have shown, may increase the risk of neoplastic transformation of porcine ovarian putative stem cells (poPSCs). The NF-κB pathway may be important in the processes of carcinogenesis and tumour progression. Therefore, in this work, we decided to test the hypothesis of whether Bdn and Ndn can activate the NF-κB pathway by acting through the membrane androgen receptor ZIP-9. For this purpose, the expression profiles of both genes involved in the NF-κB pathway and the gene coding for the ZIP-9 receptor were checked. The expression and localization of proteins of this pathway in poPSCs were also examined. Additionally, the expression of the ZIP-9 receptor and the concentration of the NF-κB1 and 2 protein complex were determined. Activation of the NF-κB pathway was primarily confirmed by an increase in the relative abundances of phosphorylated forms of RelA protein and IκBα inhibitor. Reduced quantitative profiles pinpointed not only for genes representing this pathway but also for unphosphorylated proteins, and, simultaneously, decreased concentration of the NF-κB1 and 2 complex may indicate post-activation silencing by negative feedback. However, the remarkably and sustainably diminished expression levels noticed for the SLC39A9 gene and ZIP-9 protein suggest that this receptor does not play an important role in the regulation of the NF-κB pathway.
Pacesa M., Pelea O., Jinek M.
Cell scimago Q1 wos Q1
2024-02-29 citations by CoLab: 98 Abstract  
Summary Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Ren J., Hai T., Chen Y., Sun K., Han Z., Wang J., Li C., Wang Q., Wang L., Zhu H., Yu D., Li W., Zhao S.
Science China Life Sciences scimago Q1 wos Q1
2023-11-17 citations by CoLab: 5 Abstract  
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas) system is continually optimized to achieve the most efficient gene editing effect. The Cas12iMax, a Cas12i variant, exhibits powerful DNA editing activity and enriches the gene editing toolbox. However, the application of Cas12iMax in large domestic animals has not yet been reported. To verify the efficiency and feasibility of multiple gene editing in large animals, we generated porcine fibroblasts with simultaneous knockouts of IGF2, ANPEP, CD163, and MSTN via Cas12iMax in one step. Phenotypically stable pigs were created through somatic cell nuclear transfer technology. They exhibited improved growth performance and muscle quality. Furthermore, we simultaneously edited three genes in bovine fibroblasts. A knockout of MSTN and PRNP was created and the amino acid Q-G in CD18 was precisely substituted. Meanwhile, no off-target phenomenon was observed by sum-type analysis or off-target detection. These results verified the effectiveness of Cas12iMax for gene editing in livestock animals and demonstrated the potential application of Cas12iMax in the field of animal trait improvement for agricultural production.
Duo T., Liu X., Mo D., Bian Y., Cai S., Wang M., Li R., Zhu Q., Tong X., Liang Z., Jiang W., Chen S., Chen Y., He Z.
2023-11-02 citations by CoLab: 8 PDF Abstract  
Abstract Background Chinese indigenous pigs are popular with consumers for their juiciness, flavour and meat quality, but they have lower meat production. Insulin-like growth factor 2 (IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation. A single nucleotide polymorphism (SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor, zinc finger BED-type containing 6 (ZBED6), leading to up-regulation of IGF2 and causing major effects on muscle growth, heart size, and backfat thickness. This favorable mutation is common in Western commercial pig populations, but absent in most Chinese indigenous pig breeds. To improve meat production of Chinese indigenous pigs, we used cytosine base editor 3 (CBE3) to introduce IGF2-intron3-C3071T mutation into porcine embryonic fibroblasts (PEFs) isolated from a male Liang Guang Small Spotted pig (LGSS), and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer (SCNT) to generate the founder line of IGF2T/T pigs. Results We found the heterozygous progeny IGF2C/T pigs exhibited enhanced expression of IGF2, increased lean meat by 18%–36%, enlarged loin muscle area by 3%–17%, improved intramuscular fat (IMF) content by 18%–39%, marbling score by 0.75–1, meat color score by 0.53–1.25, and reduced backfat thickness by 5%–16%. The enhanced accumulation of intramuscular fat in IGF2C/T pigs was identified to be regulated by the PI3K-AKT/AMPK pathway, which activated SREBP1 to promote adipogenesis. Conclusions We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality, and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3K-AKT/AMPK signaling pathways. Our study provides a further understanding of the biological functions of IGF2 and an example for improving porcine economic traits through precise base editing.
Gao F., Li P., Yin Y., Du X., Cao G., Wu S., Zhao Y.
Virology scimago Q2 wos Q3
2023-10-01 citations by CoLab: 15 Abstract  
Animal infectious diseases pose a significant threat to the global agriculture and biomedicine industries, leading to significant economic losses and public health risks. The emergence and spread of viral infections such as African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and avian influenza virus (AIV) have highlighted the need for innovative approaches to develop resilient and disease-resistant animal populations. Gene editing technologies, such as CRISPR/Cas9, offer a promising avenue for generating animals with enhanced disease resistance. This review summarizes recent advances in molecular breeding strategies for generating disease-resistant animals, focusing on the development of disease-resistant livestock. We also highlight the potential applications of genome-wide CRISPR/Cas9 library screening and base editors in producing precise gene modified livestock for disease resistance in the future. Overall, gene editing technologies have the potential to revolutionize animal breeding and improve animal health and welfare.
Wang J., Wu S., Li Y., Zhao Y., Liu Z., Deng S., Lian Z.
Cells scimago Q1 wos Q2 Open Access
2023-07-10 citations by CoLab: 3 PDF Abstract  
The CRISPR/Cas9 system is widely used for genome editing in livestock production, although off-target effects can occur. It is the main method to produce genome-edited goats by somatic cell nuclear transfer (SCNT) of CRISPR/Cas9-mediated genome-edited primary goat fetal fibroblast cells (GFFs). Improving the double-strand break (DSB) efficiency of Cas9 in primary cells would improve the homologous repair (HR) efficiency. The low efficiency of HR remains a major hurdle in CRISPR/Cas9-mediated precise genome editing, increasing the work required to screen the genome-edited primary cell clones. In this study, we modified several essential parameters that affect the efficiency of the CRISPR/Cas9-mediated knock-in GFF cloning system, including establishing a high-efficiency transfection system for primary cells via nucleofection and optimizing homology arm (HA) length during HR. Here, we specifically inserted a recombinant human butyrylcholinesterase gene (rhBChE) into the goat fibroblast growth factor (FGF)-5 locus through the CRISPR/Cas9 system, thereby achieving simultaneous rhBChE insertion and FGF5 knock-out. First, this study introduced the Cas9, FGF5 knock-out small guide RNA, and rhBChE knock-in donors into GFFs by electroporation and obtained positive cell clones without off-target effects. Then, we demonstrated the expression of rhBChE in GFF clones and verified its function. Finally, we obtained a CRISPR/Cas9-mediated rhBChE-overexpression goat.
Mikkelsen N.S., Bak R.O.
Journal of Biomedical Science scimago Q1 wos Q1 Open Access
2023-07-01 citations by CoLab: 12 PDF Abstract  
AbstractGenome editing technologies hold great promise for numerous applications including the understanding of cellular and disease mechanisms and the development of gene and cellular therapies. Achieving high editing frequencies is critical to these research areas and to achieve the overall goal of being able to manipulate any target with any desired genetic outcome. However, gene editing technologies sometimes suffer from low editing efficiencies due to several challenges. This is often the case for emerging gene editing technologies, which require assistance for translation into broader applications. Enrichment strategies can support this goal by selecting gene edited cells from non-edited cells. In this review, we elucidate the different enrichment strategies, their many applications in non-clinical and clinical settings, and the remaining need for novel strategies to further improve genome research and gene and cellular therapy studies.
Yang S., Zhu X., Qu Z., Chen C., Wu Y., Wu Y., Luo Z., Wang X., He C., Fang J., Wang L., Hong G., Zheng S., Zeng J., Yan A., et. al.
2023-04-26 citations by CoLab: 3 Abstract  
Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5′ end splice donor and 3′ end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5′-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5′-GC) in the conserved sequence (5′-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.
Wang J.Y., Doudna J.A.
Science scimago Q1 wos Q1 Open Access
2023-01-20 citations by CoLab: 510 PDF Abstract  
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) genome editing, coupled with advances in computing and imaging capabilities, has initiated a new era in which genetic diseases and individual disease susceptibilities are both predictable and actionable. Likewise, genes responsible for plant traits can be identified and altered quickly, transforming the pace of agricultural research and plant breeding. In this Review, we discuss the current state of CRISPR-mediated genetic manipulation in human cells, animals, and plants along with relevant successes and challenges and present a roadmap for the future of this technology.
Samiec M., Wiater J., Wartalski K., Skrzyszowska M., Trzcińska M., Lipiński D., Jura J., Smorąg Z., Słomski R., Duda M.
2022-09-07 citations by CoLab: 13 PDF Abstract  
The present study sought to establish the mitotically stable adult cutaneous fibroblast cell (ACFC) lines stemming from hFUT2×hGLA×HLA-E triple-transgenic pigs followed by trichostatin A (TSA)-assisted epigenetically modulating the reprogrammability of the transgenes permanently incorporated into the host genome and subsequent comprehensive analysis of molecular signatures related to proteomically profiling the generated ACFC lines. The results of Western blot and immunofluorescence analyses have proved that the profiles of relative abundance (RA) noticed for both recombinant human α-galactosidase A (rhα-Gal A) and human leukocyte antigen-E (HLA-E) underwent significant upregulations in tri-transgenic (3×TG) ACFCs subjected to TSA-mediated epigenetic transformation as compared to not only their TSA-unexposed counterparts but also TSA-treated and untreated non-transgenic (nTG) cells. The RT-qPCR-based analysis of porcine tri-genetically engineered ACFCs revealed stable expression of mRNA fractions transcribed from hFUT2, hGLA and HLA-E transgenes as compared to a lack of such transcriptional activities in non-transgenic ACFC variants. Furthermore, although TSA-based epigenomic modulation has given rise to a remarkable increase in the expression levels of Galα1→3Gal (α-Gal) epitopes that have been determined by lectin blotting analysis, their semi-quantitative profiles have dwindled profoundly in both TSA-exposed and unexposed 3×TG ACFCs as compared to their nTG counterparts. In conclusion, thoroughly exploring proteomic signatures in such epigenetically modulated ex vivo models devised on hFUT2×hGLA×HLA-E triple-transgenic ACFCs that display augmented reprogrammability of translational activities of two mRNA transcripts coding for rhα-Gal A and HLA-E proteins might provide a completely novel and powerful research tool for the panel of further studies. The objective of these future studies should be to multiply the tri-transgenic pigs with the aid of somatic cell nuclear transfer (SCNT)-based cloning for the purposes of both xenografting the porcine cutaneous bioprostheses and dermoplasty-mediated surgical treatments in human patients.
Pacesa M., Loeff L., Querques I., Muckenfuss L.M., Sawicka M., Jinek M.
Nature scimago Q1 wos Q1
2022-08-24 citations by CoLab: 94 Abstract  
Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage1–3. The programmable activity of Cas9 has been widely utilized for genome editing applications4–6, yet its precise mechanisms of target DNA binding and off-target discrimination remain incompletely understood. Here we report a series of cryo-electron microscopy structures of Streptococcus pyogenes Cas9 capturing the directional process of target DNA hybridization. In the early phase of R-loop formation, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the distal end of the target DNA duplex. Guide–target hybridization past the seed region induces rearrangements of the REC2 and REC3 domains and relocation of the HNH nuclease domain to assume a catalytically incompetent checkpoint conformation. Completion of the guide–target heteroduplex triggers conformational activation of the HNH nuclease domain, enabled by distortion of the guide–target heteroduplex, and complementary REC2 and REC3 domain rearrangements. Together, these results establish a structural framework for target DNA-dependent activation of Cas9 that sheds light on its conformational checkpoint mechanism and may facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity. Cryo-electron microscopy structures of Streptococcus pyogenes Cas9 in multiple DNA-bound states provide insights on the mechanism of Cas9 activation by target DNA.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?