Effect of Microporous Surface Zirconia on Mechanical Properties and Biological Behavior of Human Gingival Fibroblasts
ABSTRACT
As a commonly used material in prosthodontics, zirconia has garnered widespread attention. Addressing the shortcomings of existing zirconia materials, this study aims to investigate the mechanical properties of microporous surface zirconia ceramics and their impact on the biological behavior of human gingival cells. Microporous surface zirconia was developed using a novel ceramic plasticity process, sintered at 1460°C for densification. The surface morphology and composition were determined through scanning electron microscopy and energy dispersive spectrometer. Surface roughness was measured using atomic force microscopy, hydrophilicity angle was determined using a contact angle measurement instrument, and X‐ray diffractometer assessed the crystalline phase content before and after aging. Material flexural strength was determined using a universal testing machine. The influence of microporous surface zirconia on the adhesion and proliferation of human gingival fibroblasts (HGFs) was investigated through CCK‐8 and immunofluorescence staining for Integrin β1 and F‐actin. The pore structure of microporous surface zirconia (MZ) group is uniform, with a flexural strength of 1375.86 ± 76.97 MPa, significantly higher than the control (Cont) group (p < 0.05). The percentage of HGFs adhesion to the MZ group was markedly higher than the Cont group (p < 0.05). Fluorescence of Integrin β1 and F‐actin in the MZ group was significantly higher than in the Cont group. In conclusion, Microporous surface zirconia promotes the attachment and proliferation of human gingival fibroblasts, facilitating early closure of soft tissues.