Medical Physics, volume 51, issue 2, pages 826-838

An anthropomorphic thyroid phantom for ultrasound‐guided radiofrequency ablation of nodules

Publication typeJournal Article
Publication date2023-12-23
Journal: Medical Physics
scimago Q1
SJR1.052
CiteScore6.8
Impact factor3.2
ISSN00942405, 24734209
General Medicine
Abstract
Background

Needle‐based procedures, such as fine needle aspiration and thermal ablation, are often applied for thyroid nodule diagnosis and therapeutic purposes, respectively. With blood vessels and nerves nearby, these procedures can pose risks in damaging surrounding critical structures.

Purpose

The development and validation of innovative strategies to manage these risks require a test object with well‐characterized physical properties. For this work, we focus on the application of ultrasound‐guided thermal radiofrequency ablation.

Methods

We have developed a single‐use anthropomorphic phantom mimicking the thyroid and surrounding anatomical and physiological structures that are relevant to ultrasound‐guided thermal ablation. The phantom was composed of a mixture of polyacrylamide, water, and egg white extract and was cast using molds in multiple steps. The thermal, acoustical, and electrical characteristics were experimentally validated. The ablation zones were analyzed via non‐destructive T2‐weighted magnetic resonance imaging scans utilizing the relaxometry changes of coagulated egg albumen, and the temperature distribution was monitored using an array of fiber Bragg grating sensors.

Results

The physical properties of the phantom were verified both on ultrasound as well as in terms of the phantom response to thermal ablation. The final temperature achieved (92°C), the median percentage of the nodule ablated (82.1%), the median volume ablated outside the nodule (0.8 mL), and the median number of critical structures affected (0) were quantified.

Conclusion

An anthropomorphic phantom that can provide a realistic model for development and training in ultrasound‐guided needle‐based thermal interventions for thyroid nodules has been presented.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?