том 18 издание 12 страницы 2105673

DiZyme: Open‐Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity

Тип публикацииJournal Article
Дата публикации2022-01-14
scimago Q1
wos Q1
БС1
SJR3.301
CiteScore16.1
Impact factor12.1
ISSN16136810, 16136829
General Chemistry
Biotechnology
General Materials Science
Biomaterials
Краткое описание

Enzymes suffer from high cost, complex purification, and low stability. Development of low‐cost artificial enzymes of comparative or higher effectiveness is desired. Given its complexity, it is desired to presume their activities prior to experiments. While computational approaches demonstrate success in modeling nanozyme activities, they require assumptions about the system to be made. Machine learning (ML) is an alternative approach towards data‐driven material property prediction achieving high performance even on multicomponent complex systems. Despite the growing demand for customized nanozymes, there is no open access nanozyme database. Here, a user‐friendly expandable database of >300 existing inorganic nanozymes is developed by data collection from >100 articles. Data analysis is performed to reveal the features responsible for catalytic activities of nanozymes, and new descriptors are proposed for its ML‐assisted prediction. A random forest regression (RFR) model for evaluation of nanozyme peroxidase activity is developed and optimized by correlation‐based feature selection and hyperparameter tuning, achieving performance up to R2 = 0.796 for Kcat and R2 = 0.627 for Km. Experiment‐confirmed unknown nanozyme activity prediction is also demonstrated. Moreover, the DiZyme expandable, open‐access resource containing the database, predictive algorithm, and visualization tool is developed to boost novel nanozyme discovery worldwide (https://dizyme.net).

Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
Small
5 публикаций, 11.9%
Advanced Materials
4 публикации, 9.52%
Coordination Chemistry Reviews
3 публикации, 7.14%
Advanced healthcare materials
2 публикации, 4.76%
ACS Nano
2 публикации, 4.76%
Nanoscale
2 публикации, 4.76%
Journal of Physical Chemistry Letters
2 публикации, 4.76%
Advanced Drug Delivery Reviews
1 публикация, 2.38%
Nano Letters
1 публикация, 2.38%
ACS Materials Letters
1 публикация, 2.38%
Journal of Materials Chemistry B
1 публикация, 2.38%
Analytical Chemistry
1 публикация, 2.38%
Nano-Micro Letters
1 публикация, 2.38%
Food Chemistry
1 публикация, 2.38%
Materials Advances
1 публикация, 2.38%
Biomaterials Science
1 публикация, 2.38%
Journal of Chemical Information and Modeling
1 публикация, 2.38%
Journal of Intelligent Medicine
1 публикация, 2.38%
Chemical Society Reviews
1 публикация, 2.38%
Chemical Reviews
1 публикация, 2.38%
Challenges and Advances in Computational Chemistry and Physics
1 публикация, 2.38%
Scientific Reports
1 публикация, 2.38%
ACS applied materials & interfaces
1 публикация, 2.38%
Materials Horizons
1 публикация, 2.38%
Biosensors and Bioelectronics
1 публикация, 2.38%
ACS Applied Nano Materials
1 публикация, 2.38%
Talanta
1 публикация, 2.38%
Materials Today Bio
1 публикация, 2.38%
1
2
3
4
5

Издатели

2
4
6
8
10
12
Wiley
12 публикаций, 28.57%
American Chemical Society (ACS)
11 публикаций, 26.19%
Elsevier
8 публикаций, 19.05%
Royal Society of Chemistry (RSC)
7 публикаций, 16.67%
Springer Nature
3 публикации, 7.14%
2
4
6
8
10
12
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
42
Поделиться
Цитировать
ГОСТ |
Цитировать
Razlivina J. et al. DiZyme: Open‐Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity // Small. 2022. Vol. 18. No. 12. p. 2105673.
ГОСТ со всеми авторами (до 50) Скопировать
Razlivina J., Serov N., Shapovalova O., Vinogradov V. DiZyme: Open‐Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity // Small. 2022. Vol. 18. No. 12. p. 2105673.
RIS |
Цитировать
TY - JOUR
DO - 10.1002/smll.202105673
UR - https://onlinelibrary.wiley.com/doi/10.1002/smll.202105673
TI - DiZyme: Open‐Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity
T2 - Small
AU - Razlivina, Julia
AU - Serov, Nikita
AU - Shapovalova, Olga
AU - Vinogradov, Vladimir
PY - 2022
DA - 2022/01/14
PB - Wiley
SP - 2105673
IS - 12
VL - 18
PMID - 35032097
SN - 1613-6810
SN - 1613-6829
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Razlivina,
author = {Julia Razlivina and Nikita Serov and Olga Shapovalova and Vladimir Vinogradov},
title = {DiZyme: Open‐Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity},
journal = {Small},
year = {2022},
volume = {18},
publisher = {Wiley},
month = {jan},
url = {https://onlinelibrary.wiley.com/doi/10.1002/smll.202105673},
number = {12},
pages = {2105673},
doi = {10.1002/smll.202105673}
}
MLA
Цитировать
Razlivina, Julia, et al. “DiZyme: Open‐Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity.” Small, vol. 18, no. 12, Jan. 2022, p. 2105673. https://onlinelibrary.wiley.com/doi/10.1002/smll.202105673.