Terminal Passivation–Induced Interface Decoupling for High‐Stability Two‐Dimensional Semiconductors
ABSTRACT
Two‐dimensional (2D) materials, such as MoS2, show exceptional potential for next‐generation electronics. However, the poor stability of these materials, particularly under long‐term operations and high temperature, impedes their practical applications. Here, we develop a terminal passivation interface decoupling (TPID) strategy to significantly improve the stability of MoS2, by mitigating the interaction between the substrate and the 2D material within the in‐situ growth process. Specifically, the strong electron‐withdrawing terminal group hydroxyl, prevalent on the oxide substrate, is passivated by carbon groups. Due to this, the structure of MoS2 materials remains stable during long‐term storage, and its electronic devices, field‐effect transistors (FETs), show remarkable operational and high‐temperature (400°C) stability over 60 days, with much‐improved performance. For example, mobility increases from 9.69 to 85 cm2/(V·s), the highest value for bottom‐up transfer‐free single crystal MoS2 FETs. This work provides a new avenue to solve reliability issues of 2D materials and devices, laying a foundation for their applications in the electronic industry.
Top-30
Journals
|
1
|
|
|
Science China Materials
1 publication, 100%
|
|
|
1
|
Publishers
|
1
|
|
|
Springer Nature
1 publication, 100%
|
|
|
1
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.