Advanced Functional Materials, volume 22, issue 8, pages 1741-1748

High-Sensitivity p-n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots

Publication typeJournal Article
Publication date2012-02-13
scimago Q1
SJR5.496
CiteScore29.5
Impact factor18.5
ISSN1616301X, 16163028
Electronic, Optical and Magnetic Materials
Electrochemistry
Condensed Matter Physics
Biomaterials
Abstract
Chemically synthesized nanocrystal quantum dots (NQDs) are promising materials for applications in solution-processable optoelectronic devices such as light emitting diodes, photodetectors, and solar cells. Here, we fabricate and study two types of p-n junction photodiodes in which the photoactive p-layer is made from PbS NQDs while the transparent n-layer is fabricated from wide bandgap oxides (ZnO or TiO 2). By using a p-n junction architecture we are able to significantly reduce the dark current compared to earlier Schottky junction devices without reducing external quantum efficiency (EQE), which reaches values of up to ∼80%. The use of this device architecture also allows us to significantly reduce noise and obtain high detectivity (>10 12 cm Hz 1/2 W -1) extending to the near infrared past 1 μm. We observe that the spectral shape of the photoresponse exhibits a significant dependence on applied bias, and specifically, the EQE sharply increases around 500-600 nm at reverse biases greater than 1 V. We attribute this behavior to a turn-on of an additional contribution to the photocurrent due to electrons excited to the conduction band from the occupied mid-gap states.
Found 
Found 

Top-30

Journals

1
2
3
4
5
6
7
1
2
3
4
5
6
7

Publishers

5
10
15
20
25
5
10
15
20
25
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?