Advanced Materials, volume 29, issue 17, pages 1606576

MoS2 -HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm

Publication typeJournal Article
Publication date2017-03-01
scimago Q1
SJR9.191
CiteScore43.0
Impact factor27.4
ISSN09359648, 15214095
General Materials Science
Mechanical Engineering
Mechanics of Materials
Abstract
Mercury telluride (HgTe) colloidal quantum dots (CQDs) have been developed as promising materials for the short and mid-wave infrared photodetection applications because of their low cost, solution processing, and size tunable absorption in the short wave and mid-infrared spectrum. However, the low mobility and poor photogain have limited the responsivity of HgTe CQD-based photodetectors to only tens of mA W-1 . Here, HgTe CQDs are integrated on a TiO2 encapsulated MoS2 transistor channel to form hybrid phototransistors with high responsivity of ≈106 A W-1 , the highest reported to date for HgTe QDs. By operating the phototransistor in the depletion regime enabled by the gate modulated current of MoS2 , the noise current is significantly suppressed, leading to an experimentally measured specific detectivity D* of ≈1012 Jones at a wavelength of 2 µm. This work demonstrates for the first time the potential of the hybrid 2D/QD detector technology in reaching out to wavelengths beyond 2 µm with compelling sensitivity.

Top-30

Journals

2
4
6
8
10
12
14
16
18
2
4
6
8
10
12
14
16
18

Publishers

10
20
30
40
50
60
70
10
20
30
40
50
60
70
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?