Advanced Materials, volume 32, issue 2, pages 1905517

Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries

Aijun Li 1, 2
Xiangbiao Liao 3
Hanrui Zhang 2
Lei Shi 4
Peiyu Wang 2
Qian Cheng 2
James Borovilas 2
Zeyuan Li 2
Wenlong Huang 2
Zhenxuan Fu 2
Martin Dontigny 5
Karim Zaghib 5
Xiuyun Chuan 1
Xi Chen 3
Yuan Yang 2
Publication typeJournal Article
Publication date2019-11-29
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor29.4
ISSN09359648, 15214095
General Materials Science
Mechanical Engineering
Mechanics of Materials
Abstract
Solid-state lithium-metal batteries with solid electrolytes are promising for next-generation energy-storage devices. However, it remains challenging to develop solid electrolytes that are both mechanically robust and strong against external mechanical load, due to the brittleness of ceramic electrolytes and the softness of polymer electrolytes. Herein, a nacre-inspired design of ceramic/polymer solid composite electrolytes with a “brick-and-mortar” microstructure is proposed. The nacre-like ceramic/polymer electrolyte (NCPE) simultaneously possesses a much higher fracture strain (1.1%) than pure ceramic electrolytes (0.13%) and a much larger ultimate flexural modulus (7.8 GPa) than pure polymer electrolytes (20 MPa). The electrochemical performance of NCPE is also much better than pure ceramic or polymer electrolytes, especially under mechanical load. A 5 × 5 cm2 pouch cell with LAGP/poly(ether-acrylate) NCPE exhibits stable cycling with a capacity retention of 95.6% over 100 cycles at room temperature, even undergoes a large point load of 10 N. In contrast, cells based on pure ceramic and pure polymer electrolyte show poor cycle life. The NCPE provides a new design for solid composite electrolyte and opens up new possibilities for future solid-state lithium-metal batteries and structural energy storage.

Top-30

Citations by journals

1
2
3
4
5
Advanced Functional Materials
5 publications, 4.55%
ACS applied materials & interfaces
5 publications, 4.55%
Small
4 publications, 3.64%
ACS Applied Energy Materials
4 publications, 3.64%
Advanced Energy Materials
4 publications, 3.64%
Journal of Materials Chemistry A
4 publications, 3.64%
Angewandte Chemie
3 publications, 2.73%
Angewandte Chemie - International Edition
3 publications, 2.73%
Advanced Materials
3 publications, 2.73%
Advanced Science
3 publications, 2.73%
Materials Chemistry Frontiers
2 publications, 1.82%
Small Methods
2 publications, 1.82%
Journal of the Electrochemical Society
2 publications, 1.82%
Nanomaterials
2 publications, 1.82%
Materials
2 publications, 1.82%
Nature Communications
2 publications, 1.82%
Nano Research
2 publications, 1.82%
Materials Today
2 publications, 1.82%
Chemical Engineering Journal
2 publications, 1.82%
Composites Science and Technology
2 publications, 1.82%
ACS Energy Letters
2 publications, 1.82%
Battery Energy
2 publications, 1.82%
Nano-Micro Letters
1 publication, 0.91%
Composites Part B: Engineering
1 publication, 0.91%
Journal of Advanced Ceramics
1 publication, 0.91%
Ionics
1 publication, 0.91%
Journal of Electroanalytical Chemistry
1 publication, 0.91%
Nano Energy
1 publication, 0.91%
Electrochimica Acta
1 publication, 0.91%
1
2
3
4
5

Citations by publishers

5
10
15
20
25
30
35
40
45
50
Wiley
46 publications, 41.82%
Elsevier
20 publications, 18.18%
American Chemical Society (ACS)
14 publications, 12.73%
Royal Society of Chemistry (RSC)
9 publications, 8.18%
Springer Nature
7 publications, 6.36%
Multidisciplinary Digital Publishing Institute (MDPI)
4 publications, 3.64%
The Electrochemical Society
2 publications, 1.82%
Tsinghua University Press
1 publication, 0.91%
IOP Publishing
1 publication, 0.91%
Nonferrous Metals Society of China
1 publication, 0.91%
Frontiers Media S.A.
1 publication, 0.91%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 0.91%
5
10
15
20
25
30
35
40
45
50
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Li A. et al. Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries // Advanced Materials. 2019. Vol. 32. No. 2. p. 1905517.
GOST all authors (up to 50) Copy
Li A., Liao X., Zhang H., Shi L., Wang P., Cheng Q., Borovilas J., Li Z., Huang W., Fu Z., Dontigny M., Zaghib K., Myers K., Chuan X., Chen X., Yang Y. Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries // Advanced Materials. 2019. Vol. 32. No. 2. p. 1905517.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1002/adma.201905517
UR - https://doi.org/10.1002/adma.201905517
TI - Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries
T2 - Advanced Materials
AU - Li, Aijun
AU - Wang, Peiyu
AU - Borovilas, James
AU - Huang, Wenlong
AU - Fu, Zhenxuan
AU - Chuan, Xiuyun
AU - Yang, Yuan
AU - Liao, Xiangbiao
AU - Zhang, Hanrui
AU - Shi, Lei
AU - Cheng, Qian
AU - Li, Zeyuan
AU - Dontigny, Martin
AU - Zaghib, Karim
AU - Myers, Kristin
AU - Chen, Xi
PY - 2019
DA - 2019/11/29 00:00:00
PB - Wiley
SP - 1905517
IS - 2
VL - 32
SN - 0935-9648
SN - 1521-4095
ER -
BibTex |
Cite this
BibTex Copy
@article{2019_Li,
author = {Aijun Li and Peiyu Wang and James Borovilas and Wenlong Huang and Zhenxuan Fu and Xiuyun Chuan and Yuan Yang and Xiangbiao Liao and Hanrui Zhang and Lei Shi and Qian Cheng and Zeyuan Li and Martin Dontigny and Karim Zaghib and Kristin Myers and Xi Chen},
title = {Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries},
journal = {Advanced Materials},
year = {2019},
volume = {32},
publisher = {Wiley},
month = {nov},
url = {https://doi.org/10.1002/adma.201905517},
number = {2},
pages = {1905517},
doi = {10.1002/adma.201905517}
}
MLA
Cite this
MLA Copy
Li, Aijun, et al. “Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries.” Advanced Materials, vol. 32, no. 2, Nov. 2019, p. 1905517. https://doi.org/10.1002/adma.201905517.
Found error?