Advanced Energy Materials, volume 10, issue 20, pages 2000093

Electrolytes and Interphases in Sodium‐Based Rechargeable Batteries: Recent Advances and Perspectives

Gebrekidan Gebresilassie Eshetu 1, 2, 3, 4, 5
Jun Lu 1, 8
Publication typeJournal Article
Publication date2020-04-07
scimago Q1
SJR8.748
CiteScore41.9
Impact factor24.4
ISSN16146832, 16146840
General Materials Science
Renewable Energy, Sustainability and the Environment
Abstract

For sodium (Na)‐rechargeable batteries to compete, and go beyond the currently prevailing Li‐ion technologies, mastering the chemistry and accompanying phenomena is of supreme importance. Among the crucial components of the battery system, the electrolyte, which bridges the highly polarized positive and negative electrode materials, is arguably the most critical and indispensable of all. The electrolyte dictates the interfacial chemistry of the battery and the overall performance, having an influence over the practical capacity, rate capability (power), chemical/thermal stress (safety), and lifetime. In‐depth knowledge of electrolyte properties provides invaluable information to improve the design, assembly, and operation of the battery. Thus, the full‐scale appraisal of both tailored electrolytes and the concomitant interphases generated at the electrodes need to be prioritized. The deployment of large‐format Na‐based rechargeable batteries also necessitates systematic evaluation and detailed appraisal of the safety‐related hazards of Na‐based batteries. Hence, this review presents a comprehensive account of the progress, status, and prospect of various Na+‐ion electrolytes, including solvents, salts and additives, their interphases and potential hazards.

Top-30

Journals

2
4
6
8
10
12
14
16
18
20
2
4
6
8
10
12
14
16
18
20

Publishers

20
40
60
80
100
120
20
40
60
80
100
120
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?