Open Access
Open access
Advanced Intelligent Systems, volume 2, issue 11, pages 2000115

In‐Memory Vector‐Matrix Multiplication in Monolithic Complementary Metal–Oxide–Semiconductor‐Memristor Integrated Circuits: Design Choices, Challenges, and Perspectives

Amirali Amirsoleimani 1
Fabien Alibart 2, 3, 4
Victor Yon 2, 3
Jianxiong Xu 1
M Reza Pazhouhandeh 1
Serge Ecoffey 2, 3
Y. Beilliard 2, 3
Roman Genov 1
D Drouin 2, 3
Show full list: 9 authors
Publication typeJournal Article
Publication date2020-08-23
SJR
CiteScore1.3
Impact factor6.8
ISSN26404567
Abstract
The low communication bandwidth between memory and processing units in conventional von Neumann machines does not support the requirements of emerging applications that rely extensively on large sets of data. More recent computing paradigms, such as high parallelization and near‐memory computing, help alleviate the data communication bottleneck to some extent, but paradigm‐shifting concepts are required. In‐memory computing has emerged as a prime candidate to eliminate this bottleneck by colocating memory and processing. In this context, resistive switching (RS) memory devices is a key promising choice, due to their unique intrinsic device‐level properties, enabling both storing and computing with a small, massively‐parallel footprint at low power. Theoretically, this directly translates to a major boost in energy efficiency and computational throughput, but various practical challenges remain. A qualitative and quantitative analysis of several key existing challenges in implementing high‐capacity, high‐volume RS memories for accelerating the most computationally demanding computation in machine learning (ML) inference, that of vector‐matrix multiplication (VMM), is presented. The monolithic integration of RS memories with complementary metal–oxide–semiconductor (CMOS) integrated circuits is presented as the core underlying technology. The key existing design choices in terms of device‐level physical implementation, circuit‐level design, and system‐level considerations is reviewed and an outlook for future directions is provided.

Top-30

Journals

1
2
3
4
5
6
7
1
2
3
4
5
6
7

Publishers

5
10
15
20
25
30
35
40
45
5
10
15
20
25
30
35
40
45
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?