Journal of Applied Polymer Science, volume 140, issue 38

Properties of co‐precipitated jack bean starch‐based magnetic nanoparticles derivatives

Abraham Olasupo Oladebeye 1
Margaret Moji Nomiye 2
Miracle Osisike 2
Kabirat Omotoyosi Gbadamosi 2
Adewale Fatai Adeyemi 2
Adeleke Omodunbi Ashogbon 3
Aderonke Adenike Oladebeye 4
1
 
Department of Science Laboratory Technology University of Medical Sciences Ondo Nigeria
2
 
Department of Chemistry University of Medical Sciences Ondo Nigeria
Publication typeJournal Article
Publication date2023-07-12
scimago Q2
SJR0.557
CiteScore5.7
Impact factor2.7
ISSN00218995, 10974628
Materials Chemistry
Surfaces, Coatings and Films
General Chemistry
Polymers and Plastics
Abstract

Low‐ and high‐derivatives of magnetic starch nanoparticles (MSNPs) are obtained at respective 5 and 10 mL of 25% glutaraldehyde at 60, 70, and 80°C via coprecipitation of iron (II, III) oxide with jack bean starch. Their swelling power, solubility, bulk density, Fourier transform infra‐red (FTIR) patterns, thermogravimetric analysis (TGA)‐differential thermal analysis (DTA), x‐ray diffraction (XRD), Brunauer–Emmet–Teller (BET) properties, and morphology are analyzed. The results show that the MSNPs derivatives are pH‐responsive and temperature‐dependent. Peak swelling power (4.19 ± 0.01 g/g) of MSNPs derivative is obtained at 60°C. MSNPs derivatives are more soluble in acidic medium than alkaline medium. Bulk density improves three times more in MSNPs derivatives. FeO stretching bonds are observed at 530.73, 551.03, and 621.44 cm−1 for the MSNPs derivatives in addition to peaks of OH stretching at 3251.06 cm−1 (native starch [NS]), 3308.41 cm−1 (low‐substituted MSNPs), and 3133.28 cm−1 (high‐substituted MSNPs). The TGA‐DTA curves are endothermic and MSNPs are thermally stable beyond 700°C. MSNPs derivatives exhibit average lattice constant of 0.82382 nm with prominent peaks at 30.00° 2θ and 32.00° 2θ. MSNPs derivatives are mesoporous with peak BET surface area of 50.462 m2g−1. The microstructures of NS and MSNPs derivatives are predominantly oval. The MSNPs studied can serve as alternative functional biomaterials and nanosorbents.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?