Chemistry - A European Journal, volume 20, issue 10, pages 2819-2828

Mechanistic studies of Hoveyda-Grubbs metathesis catalysts bearing S-, Br-, I-, and N-coordinating naphthalene ligands.

Publication typeJournal Article
Publication date2014-02-12
scimago Q1
wos Q2
SJR1.058
CiteScore7.9
Impact factor3.9
ISSN09476539, 15213765
General Chemistry
Catalysis
Organic Chemistry
Abstract
Derivatives of the Hoveyda-Grubbs complex bearing S-, Br-, I-, and N-coordinating naphthalene ligands were synthesized and characterized with NMR and X-ray studies. Depending on the arrangement of the coordinating sites on the naphthalene core, the isomeric catalysts differ in activity in model metathesis reactions. In particular, complexes with the RuCH bond adjacent to the second aromatic ring of the ligand suffer from difficulties experienced on their preparation and initiation. The behavior most probably derives from steric hindrance around the double bond and repulsive intraligand interactions, which result in abnormal chemical shifts of benzylidene protons observed with (1) H NMR. Furthermore EXSY studies revealed that the halogen-chelated ruthenium complexes display an equilibrium, in which major cis-Cl2 structures are accompanied with small amounts of isomeric forms. In general, contents of the minor forms, measured at 80 °C, correlate with the observed activity trends of the catalysts, although some exceptions complicate the mechanistic picture. We assume that for the family of halogen-chelated metathesis catalysts the initiation mechanism starts with the cis-Cl2 ⇌trans-Cl2 isomerization, although further steps may become rate-limiting for selected systems.

Top-30

Journals

1
2
3
1
2
3

Publishers

2
4
6
8
10
2
4
6
8
10
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?