Journal of Morphology, volume 280, issue 3, pages 329-338

Gill remodelling during terrestrial acclimation in the amphibious fishPolypterus senegalus

Publication typeJournal Article
Publication date2019-02-01
scimago Q2
SJR0.519
CiteScore2.8
Impact factor1.5
ISSN03622525, 10974687
Animal Science and Zoology
Developmental Biology
Abstract
Fishes are effectively weightless in water due to the buoyant support of the environment, but amphibious fishes must cope with increased effective weight when on land. Delicate structures such as gills are especially vulnerable to collapse and loss of surface area out of water. We tested the 'structural support' hypothesis that amphibious Polypterus senegalus solve this problem using phenotypically plastic changes that provide mechanical support and increase stiffness at the level of the gill lamellae, the filaments, and the whole arches. After 7 d in terrestrial conditions, enlargement of an inter-lamellar cell mass filled the water channels between gill lamellae, possibly to provide structural support and/or reduce evaporative water loss. Similar gill remodelling has been described in several other actinopterygian fishes, suggesting this may be an ancestral trait. There was no change in the mechanical properties or collagen composition of filaments or arches after 7 days out of water, but 8 months of terrestrial acclimation caused a reduction in gill arch length and mineralized bone volume. Thus, rather than increasing the size and stiffness of the gill skeleton, P. senegalus may instead reduce investment in supportive gill tissue while on land. These results are strikingly similar to the evolutionary trend of gill loss that occurred during the tetrapod invasion of land, raising the possibility that genetic assimilation of gill plasticity was an underlying mechanism.
Found 
Found 

Top-30

Journals

1
2
3
4
1
2
3
4

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?