Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‐State Batteries Using Ionic Liquid‐Based Interlayers
Syed Atif Pervez
1, 2
,
Guktae Kim
1, 2
,
Ramaprabhu Sundara
1, 2
,
Musa Ali Cambaz
1, 2
,
Matthias Kuenzel
1, 2
,
Maral Hekmatfar
1, 2
,
Maximilian Fichtner
1, 3
,
Stefano Passerini
1, 2
Publication type: Journal Article
Publication date: 2020-04-01
scimago Q1
wos Q1
SJR: 3.301
CiteScore: 16.1
Impact factor: 12.1
ISSN: 16136810, 16136829
PubMed ID:
32105407
General Chemistry
Biotechnology
General Materials Science
Biomaterials
Abstract
Li-garnets are promising inorganic ceramic solid electrolytes for lithium metal batteries, showing good electrochemical stability with Li anode. However, their brittle and stiff nature restricts their intimate contact with both the electrodes, hence presenting high interfacial resistance to the ionic mobility. To address this issue, a strategy employing ionic liquid electrolyte (ILE) thin interlayers at the electrodes/electrolyte interfaces is adopted, which helps overcome the barrier for ion transport. The chemically stable ILE improves the electrodes-solid electrolyte contact, significantly reducing the interfacial resistance at both the positive and negative electrodes interfaces. This results in the more homogeneous deposition of metallic lithium at the negative electrode, suppressing the dendrite growth across the solid electrolyte even at high current densities of 0.3 mA cm-2 . Further, the improved interface Li/electrolyte interface results in decreasing the overpotential of symmetric Li/Li cells from 1.35 to 0.35 V. The ILE modified Li/LLZO/LFP cells stacked either in monopolar or bipolar configurations show excellent electrochemical performance. In particular, the bipolar cell operates at a high voltage (≈8 V) and delivers specific capacity as high as 145 mAh g-1 with a coulombic efficiency greater than 99%.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
2
4
6
8
10
|
|
|
ACS applied materials & interfaces
10 publications, 10.42%
|
|
|
Advanced Energy Materials
5 publications, 5.21%
|
|
|
Chemical Engineering Journal
4 publications, 4.17%
|
|
|
ACS Applied Energy Materials
4 publications, 4.17%
|
|
|
Journal of Materials Chemistry A
4 publications, 4.17%
|
|
|
Batteries & Supercaps
3 publications, 3.13%
|
|
|
ChemSusChem
3 publications, 3.13%
|
|
|
Energy and Environmental Science
3 publications, 3.13%
|
|
|
Energy Materials
3 publications, 3.13%
|
|
|
Materials Today Energy
2 publications, 2.08%
|
|
|
Angewandte Chemie - International Edition
2 publications, 2.08%
|
|
|
Angewandte Chemie
2 publications, 2.08%
|
|
|
Advanced Functional Materials
2 publications, 2.08%
|
|
|
Small
2 publications, 2.08%
|
|
|
Journal of Physical Chemistry C
2 publications, 2.08%
|
|
|
Ionics
2 publications, 2.08%
|
|
|
Progress in Materials Science
1 publication, 1.04%
|
|
|
Electrochemistry
1 publication, 1.04%
|
|
|
Molecules
1 publication, 1.04%
|
|
|
Electrochem
1 publication, 1.04%
|
|
|
Applied Sciences (Switzerland)
1 publication, 1.04%
|
|
|
Polymers
1 publication, 1.04%
|
|
|
Scientific Reports
1 publication, 1.04%
|
|
|
Science China Technological Sciences
1 publication, 1.04%
|
|
|
Joule
1 publication, 1.04%
|
|
|
Electrochimica Acta
1 publication, 1.04%
|
|
|
Journal of Alloys and Compounds
1 publication, 1.04%
|
|
|
Journal of Power Sources
1 publication, 1.04%
|
|
|
Materials Today Chemistry
1 publication, 1.04%
|
|
|
Green Chemical Engineering
1 publication, 1.04%
|
|
|
2
4
6
8
10
|
Publishers
|
5
10
15
20
25
30
35
|
|
|
Wiley
31 publications, 32.29%
|
|
|
American Chemical Society (ACS)
20 publications, 20.83%
|
|
|
Elsevier
16 publications, 16.67%
|
|
|
Royal Society of Chemistry (RSC)
9 publications, 9.38%
|
|
|
MDPI
7 publications, 7.29%
|
|
|
Springer Nature
6 publications, 6.25%
|
|
|
OAE Publishing Inc.
3 publications, 3.13%
|
|
|
The Electrochemical Society of Japan
1 publication, 1.04%
|
|
|
ASME International
1 publication, 1.04%
|
|
|
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 1.04%
|
|
|
5
10
15
20
25
30
35
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
96
Total citations:
96
Citations from 2024:
25
(26%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Pervez S. A. et al. Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‐State Batteries Using Ionic Liquid‐Based Interlayers // Small. 2020. Vol. 16. No. 14. p. 2000279.
GOST all authors (up to 50)
Copy
Pervez S. A., Kim G., Sundara R., Cambaz M. A., Kuenzel M., Hekmatfar M., Fichtner M., Passerini S. Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‐State Batteries Using Ionic Liquid‐Based Interlayers // Small. 2020. Vol. 16. No. 14. p. 2000279.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1002/smll.202000279
UR - https://doi.org/10.1002/smll.202000279
TI - Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‐State Batteries Using Ionic Liquid‐Based Interlayers
T2 - Small
AU - Pervez, Syed Atif
AU - Kim, Guktae
AU - Sundara, Ramaprabhu
AU - Cambaz, Musa Ali
AU - Kuenzel, Matthias
AU - Hekmatfar, Maral
AU - Fichtner, Maximilian
AU - Passerini, Stefano
PY - 2020
DA - 2020/04/01
PB - Wiley
SP - 2000279
IS - 14
VL - 16
PMID - 32105407
SN - 1613-6810
SN - 1613-6829
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2020_Pervez,
author = {Syed Atif Pervez and Guktae Kim and Ramaprabhu Sundara and Musa Ali Cambaz and Matthias Kuenzel and Maral Hekmatfar and Maximilian Fichtner and Stefano Passerini},
title = {Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‐State Batteries Using Ionic Liquid‐Based Interlayers},
journal = {Small},
year = {2020},
volume = {16},
publisher = {Wiley},
month = {apr},
url = {https://doi.org/10.1002/smll.202000279},
number = {14},
pages = {2000279},
doi = {10.1002/smll.202000279}
}
Cite this
MLA
Copy
Pervez, Syed Atif, et al. “Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‐State Batteries Using Ionic Liquid‐Based Interlayers.” Small, vol. 16, no. 14, Apr. 2020, p. 2000279. https://doi.org/10.1002/smll.202000279.