Alternating least squares in nonlinear principal components
Тип публикации: Journal Article
Дата публикации: 2013-10-08
scimago Q1
wos Q1
БС1
SJR: 1.452
CiteScore: 8.8
Impact factor: 5.4
ISSN: 19395108, 19390068
Statistics and Probability
Краткое описание
Principal components analysis (PCA) is probably the most popular descriptive multivariate method for analyzing quantitative data with ratio and interval scale measures. When applying PCA to nominal and ordinal data, the data are processed by a method such as optimal scaling, which nonlinearly transforms nominal and ordinal data into quantitative data. Therefore, PCA with optimal scaling is called nonlinear PCA. Nonlinear PCA reveals nonlinear relationships among variables with different measurement levels and therefore presents a more flexible alternative to ordinary PCA. The alternating least squares algorithm is utilized for nonlinear PCA. The algorithm alternates between optimal scaling for quantifying nominal and ordinal data and ordinary PCA for analyzing optimally scaled data. This article discusses two nonlinear PCA algorithms, namely, PRINCIPALS and PRINCALS. WIREs Comput Stat 2013, 5:456–464. doi: 10.1002/wics.1279 This article is categorized under: Algorithms and Computational Methods > Algorithms Statistical and Graphical Methods of Data Analysis > Multivariate Analysis Algorithms and Computational Methods > Numerical Methods Statistical Models > Nonlinear Models Algorithms and Computational Methods > Least Squares
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
6
|
|
|
Polymer Chemistry
6 публикаций, 13.64%
|
|
|
RSC Advances
5 публикаций, 11.36%
|
|
|
Biomaterials Science
4 публикации, 9.09%
|
|
|
Chemical Science
3 публикации, 6.82%
|
|
|
Biomacromolecules
2 публикации, 4.55%
|
|
|
Soft Matter
2 публикации, 4.55%
|
|
|
Lecture Notes in Computer Science
2 публикации, 4.55%
|
|
|
Advanced healthcare materials
1 публикация, 2.27%
|
|
|
Behaviormetrika
1 публикация, 2.27%
|
|
|
Journal of Informetrics
1 публикация, 2.27%
|
|
|
Journal of Safety Research
1 публикация, 2.27%
|
|
|
Case Studies on Transport Policy
1 публикация, 2.27%
|
|
|
Procedia Computer Science
1 публикация, 2.27%
|
|
|
Macromolecular Chemistry and Physics
1 публикация, 2.27%
|
|
|
Macromolecular Bioscience
1 публикация, 2.27%
|
|
|
ACS Macro Letters
1 публикация, 2.27%
|
|
|
British Journal of Mathematical and Statistical Psychology
1 публикация, 2.27%
|
|
|
Journal of Materials Chemistry B
1 публикация, 2.27%
|
|
|
New Journal of Chemistry
1 публикация, 2.27%
|
|
|
bioRxiv
1 публикация, 2.27%
|
|
|
Catena
1 публикация, 2.27%
|
|
|
Mendeleev Communications
1 публикация, 2.27%
|
|
|
Science Translational Medicine
1 публикация, 2.27%
|
|
|
Materials Advances
1 публикация, 2.27%
|
|
|
Journal of Computational Methods in Sciences and Engineering
1 публикация, 2.27%
|
|
|
1
2
3
4
5
6
|
Издатели
|
5
10
15
20
25
|
|
|
Royal Society of Chemistry (RSC)
23 публикации, 52.27%
|
|
|
Elsevier
5 публикаций, 11.36%
|
|
|
Wiley
4 публикации, 9.09%
|
|
|
American Chemical Society (ACS)
3 публикации, 6.82%
|
|
|
Springer Nature
2 публикации, 4.55%
|
|
|
Behaviormetric Society of Japan
1 публикация, 2.27%
|
|
|
Cold Spring Harbor Laboratory
1 публикация, 2.27%
|
|
|
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 2.27%
|
|
|
American Association for the Advancement of Science (AAAS)
1 публикация, 2.27%
|
|
|
IOS Press
1 публикация, 2.27%
|
|
|
5
10
15
20
25
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
44
Всего цитирований:
44
Цитирований c 2025:
3
(6.82%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Kuroda M. et al. Alternating least squares in nonlinear principal components // Wiley Interdisciplinary Reviews: Computational Statistics. 2013. Vol. 5. No. 6. pp. 456-464.
ГОСТ со всеми авторами (до 50)
Скопировать
Kuroda M., Mori Y., Iizuka M., Sakakihara M. Alternating least squares in nonlinear principal components // Wiley Interdisciplinary Reviews: Computational Statistics. 2013. Vol. 5. No. 6. pp. 456-464.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1002/wics.1279
UR - https://doi.org/10.1002/wics.1279
TI - Alternating least squares in nonlinear principal components
T2 - Wiley Interdisciplinary Reviews: Computational Statistics
AU - Kuroda, Masahiro
AU - Mori, Yuichi
AU - Iizuka, Masaya
AU - Sakakihara, Michio
PY - 2013
DA - 2013/10/08
PB - Wiley
SP - 456-464
IS - 6
VL - 5
SN - 1939-5108
SN - 1939-0068
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2013_Kuroda,
author = {Masahiro Kuroda and Yuichi Mori and Masaya Iizuka and Michio Sakakihara},
title = {Alternating least squares in nonlinear principal components},
journal = {Wiley Interdisciplinary Reviews: Computational Statistics},
year = {2013},
volume = {5},
publisher = {Wiley},
month = {oct},
url = {https://doi.org/10.1002/wics.1279},
number = {6},
pages = {456--464},
doi = {10.1002/wics.1279}
}
Цитировать
MLA
Скопировать
Kuroda, Masahiro, et al. “Alternating least squares in nonlinear principal components.” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 5, no. 6, Oct. 2013, pp. 456-464. https://doi.org/10.1002/wics.1279.