Entropic Isoperimetric Inequalities
Publication type: Book Chapter
Publication date: 2023-06-06
SJR: —
CiteScore: 1.6
Impact factor: —
ISSN: 10506977, 22970428
Abstract
We discuss optimal bounds on the Rényi entropies in terms of the Fisher information. In Information Theory, such relations are also known as entropic isoperimetric inequalities.
Found
Nothing found, try to update filter.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Total citations:
0
Cite this
GOST |
RIS |
BibTex
Cite this
GOST
Copy
Bobkov S. G., Roberto C. Entropic Isoperimetric Inequalities // Seminar on Stochastic Analysis, Random Fields and Applications VI. 2023. pp. 97-121.
GOST all authors (up to 50)
Copy
Bobkov S. G., Roberto C. Entropic Isoperimetric Inequalities // Seminar on Stochastic Analysis, Random Fields and Applications VI. 2023. pp. 97-121.
Cite this
RIS
Copy
TY - GENERIC
DO - 10.1007/978-3-031-26979-0_3
UR - https://doi.org/10.1007/978-3-031-26979-0_3
TI - Entropic Isoperimetric Inequalities
T2 - Seminar on Stochastic Analysis, Random Fields and Applications VI
AU - Bobkov, Sergey G.
AU - Roberto, Cyril
PY - 2023
DA - 2023/06/06
PB - Springer Nature
SP - 97-121
SN - 1050-6977
SN - 2297-0428
ER -
Cite this
BibTex (up to 50 authors)
Copy
@incollection{2023_Bobkov,
author = {Sergey G. Bobkov and Cyril Roberto},
title = {Entropic Isoperimetric Inequalities},
publisher = {Springer Nature},
year = {2023},
pages = {97--121},
month = {jun}
}