Open Access
Open access
Lecture Notes in Computer Science, pages 83-96

Exponential Time Complexity of the Complex Weighted Boolean #CSP

Publication typeBook Chapter
Publication date2023-12-09
Q2
SJR0.606
CiteScore2.6
Impact factor
ISSN03029743, 16113349, 18612075, 18612083
Abstract
Cai, Lu, and Xia [8] proved a dichotomy for complex weighted Boolean #CSP. If the parameter set of Boolean constraint functions $$\mathcal {F}$$ is a subset of either of the affine-type function set $$\mathcal {A}$$ and the product type function set $$\mathcal {P}$$ , then #CSP( $$\mathcal {F}$$ ) is polynomial-time solvable; otherwise, #CSP( $$\mathcal {F}$$ ) is #P-hard. Furthermore, the result holds for # $$R_3$$ -CSP( $$\mathcal {F}$$ ), which additionally restricts every variable constrained by no more than 3 constraint functions (not necessarily distinct). We strengthen the #P-hardness to the tight sub-exponential time lower bound under the counting Exponential Time Hypothesis (#ETH). We demonstrate that, if #ETH holds, then #CSP( $$\mathcal {F}$$ ) with $$\mathcal {F}\not \subseteq \mathcal {A}$$ and $$\mathcal {F}\not \subseteq \mathcal {P}$$ has no sub-exponential time algorithm. The result also holds for # $$R_D$$ -CSP( $$\mathcal {F}$$ ) with some integer $$D>0$$ , even $$D=3$$ . Additionally, we demonstrate that a vital tool pinning, forcing some variables to be 0 or 1, is still available in the context of # $$R_D$$ -CSP when proving the sub-exponential time lower bound.
Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Liu Y. Exponential Time Complexity of the Complex Weighted Boolean #CSP // Lecture Notes in Computer Science. 2023. pp. 83-96.
GOST all authors (up to 50) Copy
Liu Y. Exponential Time Complexity of the Complex Weighted Boolean #CSP // Lecture Notes in Computer Science. 2023. pp. 83-96.
RIS |
Cite this
RIS Copy
TY - GENERIC
DO - 10.1007/978-3-031-49190-0_6
UR - https://doi.org/10.1007/978-3-031-49190-0_6
TI - Exponential Time Complexity of the Complex Weighted Boolean #CSP
T2 - Lecture Notes in Computer Science
AU - Liu, Ying
PY - 2023
DA - 2023/12/09
PB - Springer Nature
SP - 83-96
SN - 0302-9743
SN - 1611-3349
SN - 1861-2075
SN - 1861-2083
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@incollection{2023_Liu,
author = {Ying Liu},
title = {Exponential Time Complexity of the Complex Weighted Boolean #CSP},
publisher = {Springer Nature},
year = {2023},
pages = {83--96},
month = {dec}
}
Found error?