volume 22 issue 3 pages 463-516

Modular Composition Modulo Triangular Sets and Applications

Publication typeJournal Article
Publication date2013-04-18
scimago Q1
wos Q2
SJR1.103
CiteScore1.8
Impact factor1.0
ISSN10163328, 14208954
General Mathematics
Computational Mathematics
Computational Theory and Mathematics
Theoretical Computer Science
Abstract
We generalize Kedlaya and Umans’ modular composition algorithm to the multivariate case. As a main application, we give fast algorithms for many operations involving triangular sets (over a finite field), such as modular multiplication, inversion, or change of order. For the first time, we are able to exhibit running times for these operations that are almost linear, without any overhead exponential in the number of variables. As a further application, we show that, from the complexity viewpoint, Charlap, Coley, and Robbins’ approach to elliptic curve point counting can be competitive with the better known approach due to Elkies.
Found 
Found 

Top-30

Journals

1
2
3
4
Journal of Complexity
4 publications, 28.57%
Applicable Algebra in Engineering, Communications and Computing
2 publications, 14.29%
Lecture Notes in Computer Science
1 publication, 7.14%
Journal of the ACM
1 publication, 7.14%
Journal of Symbolic Computation
1 publication, 7.14%
1
2
3
4

Publishers

1
2
3
4
5
Elsevier
5 publications, 35.71%
Association for Computing Machinery (ACM)
5 publications, 35.71%
Springer Nature
3 publications, 21.43%
1
2
3
4
5
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
14
Share
Cite this
GOST |
Cite this
GOST Copy
Poteaux A., Schost É. Modular Composition Modulo Triangular Sets and Applications // Computational Complexity. 2013. Vol. 22. No. 3. pp. 463-516.
GOST all authors (up to 50) Copy
Poteaux A., Schost É. Modular Composition Modulo Triangular Sets and Applications // Computational Complexity. 2013. Vol. 22. No. 3. pp. 463-516.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1007/s00037-013-0063-y
UR - https://doi.org/10.1007/s00037-013-0063-y
TI - Modular Composition Modulo Triangular Sets and Applications
T2 - Computational Complexity
AU - Poteaux, Adrien
AU - Schost, Éric
PY - 2013
DA - 2013/04/18
PB - Springer Nature
SP - 463-516
IS - 3
VL - 22
SN - 1016-3328
SN - 1420-8954
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2013_Poteaux,
author = {Adrien Poteaux and Éric Schost},
title = {Modular Composition Modulo Triangular Sets and Applications},
journal = {Computational Complexity},
year = {2013},
volume = {22},
publisher = {Springer Nature},
month = {apr},
url = {https://doi.org/10.1007/s00037-013-0063-y},
number = {3},
pages = {463--516},
doi = {10.1007/s00037-013-0063-y}
}
MLA
Cite this
MLA Copy
Poteaux, Adrien, and Éric Schost. “Modular Composition Modulo Triangular Sets and Applications.” Computational Complexity, vol. 22, no. 3, Apr. 2013, pp. 463-516. https://doi.org/10.1007/s00037-013-0063-y.