Applicable Algebra in Engineering, Communications and Computing
Sparse polynomial interpolation: faster strategies over finite fields
JORIS VAN DER HOEVEN
1
,
Grégoire Lecerf
1
1
CNRS, École polytechnique, Institut Polytechnique de Paris, Laboratoire d’informatique de l’École polytechnique (LIX, UMR 7161), Palaiseau, France
|
Publication type: Journal Article
Publication date: 2024-04-27
scimago Q3
SJR: 0.327
CiteScore: 2.9
Impact factor: 0.6
ISSN: 09381279, 14320622
Abstract
Consider a multivariate polynomial $$f \in K [x_1, \ldots , x_n]$$ over a field K, which is given through a black box capable of evaluating f at points in $$K^n$$ , or possibly at points in $$A^n$$ for any K-algebra A. The problem of sparse interpolation is to express f in its usual form with respect to the monomial basis. We analyze the complexity of various old and new algorithms for this task in terms of bounds D and T for the total degree of f and its number of terms. We mainly focus on the case when K is a finite field and explore possible speed-ups.
Nothing found, try to update filter.
Giorgi P., Grenet B., Perret du Cray A., Roche D.S.
Giorgi P., Grenet B., Cray A.P.
Huang Q.
Roche D.S.
Sedunova A.
van der Hoeven J., Larrieu R.
Hu J., Monagan M.
Grenet B., van der Hoeven J., Lecerf G.
Arnold A., Giesbrecht M., Roche D.S.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.