Holomorphic motions, natural families of entire maps, and multiplier-like objects for wandering domains
Structural stability of holomorphic functions has been the subject of much research in the last fifty years. Due to various technicalities, however, most of that work has focused on so-called finite-type functions (functions whose set of singular values has finite cardinality). Recent developments in the field go beyond this setting. In this paper we extend Eremenko and Lyubich’s result on natural families of entire maps to the case where the set of singular values is not the entire complex plane, showing under this assumption that the set
$$M_f$$