Given a bounded regular domain
$$\omega \subset \mathbb {R}^{N-1}$$
ω
⊂
R
N
-
1
and the half-cylinder
$$\Sigma = \omega \times (0,+\infty )$$
Σ
=
ω
×
(
0
,
+
∞
)
, we consider the relative overdetermined torsion problem in
$$\Sigma $$
Σ
, i.e.
$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta {u}+1=0 & \hbox { in}\ \Omega ,\\ \partial _\eta u = 0 & \hbox { on}\ {\widetilde{\Gamma }}_\Omega ,\\ u=0 & \hbox { on}\ \Gamma _\Omega ,\\ \partial _{\nu }u =c & \hbox { on}\ \Gamma _\Omega , \end{array}\right. } \end{aligned}$$
Δ
u
+
1
=
0
in
Ω
,
∂
η
u
=
0
on
Γ
~
Ω
,
u
=
0
on
Γ
Ω
,
∂
ν
u
=
c
on
Γ
Ω
,
where
$$\Omega \subset \Sigma $$
Ω
⊂
Σ
,
$$\Gamma _\Omega = \partial \Omega \cap \Sigma $$
Γ
Ω
=
∂
Ω
∩
Σ
,
$${\widetilde{\Gamma }}_\Omega = \partial \Omega {\setminus } \Gamma _\Omega $$
Γ
~
Ω
=
∂
Ω
\
Γ
Ω
,
$$\nu $$
ν
is the outer unit normal vector on
$$\Gamma _\Omega $$
Γ
Ω
and
$$\eta $$
η
is the outer unit normal vector on
$${\widetilde{\Gamma }}_\Omega $$
Γ
~
Ω
. We build nontrivial solutions to this problem in domains
$$\Omega $$
Ω
that are the hypograph of certain nonconstant functions
$$v: {\overline{\omega }} \rightarrow (0, + \infty )$$
v
:
ω
¯
→
(
0
,
+
∞
)
. Such solutions can be reflected with respect to
$$\omega $$
ω
, giving nontrivial solutions to the relative overdetermined torsion problem in a cylinder. The proof uses a local bifurcation argument which, quite remarkably, works for most smooth domains
$$\omega $$
ω
.