volume 392 issue 1 pages 1015-1029

Nontrivial solutions to the relative overdetermined torsion problem in a cylinder

Publication typeJournal Article
Publication date2025-02-26
scimago Q1
wos Q1
SJR2.292
CiteScore2.8
Impact factor1.4
ISSN00255831, 14321807
Abstract

Given a bounded regular domain $$\omega \subset \mathbb {R}^{N-1}$$ ω R N - 1 and the half-cylinder $$\Sigma = \omega \times (0,+\infty )$$ Σ = ω × ( 0 , + ) , we consider the relative overdetermined torsion problem in $$\Sigma $$ Σ , i.e. $$\begin{aligned} {\left\{ \begin{array}{ll} \Delta {u}+1=0 & \hbox { in}\ \Omega ,\\ \partial _\eta u = 0 & \hbox { on}\ {\widetilde{\Gamma }}_\Omega ,\\ u=0 & \hbox { on}\ \Gamma _\Omega ,\\ \partial _{\nu }u =c & \hbox { on}\ \Gamma _\Omega , \end{array}\right. } \end{aligned}$$ Δ u + 1 = 0 in Ω , η u = 0 on Γ ~ Ω , u = 0 on Γ Ω , ν u = c on Γ Ω , where $$\Omega \subset \Sigma $$ Ω Σ , $$\Gamma _\Omega = \partial \Omega \cap \Sigma $$ Γ Ω = Ω Σ , $${\widetilde{\Gamma }}_\Omega = \partial \Omega {\setminus } \Gamma _\Omega $$ Γ ~ Ω = Ω \ Γ Ω , $$\nu $$ ν is the outer unit normal vector on $$\Gamma _\Omega $$ Γ Ω and $$\eta $$ η is the outer unit normal vector on $${\widetilde{\Gamma }}_\Omega $$ Γ ~ Ω . We build nontrivial solutions to this problem in domains $$\Omega $$ Ω that are the hypograph of certain nonconstant functions $$v: {\overline{\omega }} \rightarrow (0, + \infty )$$ v : ω ¯ ( 0 , + ) . Such solutions can be reflected with respect to $$\omega $$ ω , giving nontrivial solutions to the relative overdetermined torsion problem in a cylinder. The proof uses a local bifurcation argument which, quite remarkably, works for most smooth domains $$\omega $$ ω .

Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Share
Cite this
GOST |
Cite this
GOST Copy
Pacella F. et al. Nontrivial solutions to the relative overdetermined torsion problem in a cylinder // Mathematische Annalen. 2025. Vol. 392. No. 1. pp. 1015-1029.
GOST all authors (up to 50) Copy
Pacella F., Ruiz D., Sicbaldi P. Nontrivial solutions to the relative overdetermined torsion problem in a cylinder // Mathematische Annalen. 2025. Vol. 392. No. 1. pp. 1015-1029.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1007/s00208-025-03112-x
UR - https://link.springer.com/10.1007/s00208-025-03112-x
TI - Nontrivial solutions to the relative overdetermined torsion problem in a cylinder
T2 - Mathematische Annalen
AU - Pacella, Filomena
AU - Ruiz, David
AU - Sicbaldi, Pieralberto
PY - 2025
DA - 2025/02/26
PB - Springer Nature
SP - 1015-1029
IS - 1
VL - 392
SN - 0025-5831
SN - 1432-1807
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Pacella,
author = {Filomena Pacella and David Ruiz and Pieralberto Sicbaldi},
title = {Nontrivial solutions to the relative overdetermined torsion problem in a cylinder},
journal = {Mathematische Annalen},
year = {2025},
volume = {392},
publisher = {Springer Nature},
month = {feb},
url = {https://link.springer.com/10.1007/s00208-025-03112-x},
number = {1},
pages = {1015--1029},
doi = {10.1007/s00208-025-03112-x}
}
MLA
Cite this
MLA Copy
Pacella, Filomena, et al. “Nontrivial solutions to the relative overdetermined torsion problem in a cylinder.” Mathematische Annalen, vol. 392, no. 1, Feb. 2025, pp. 1015-1029. https://link.springer.com/10.1007/s00208-025-03112-x.