Numerische Mathematik, volume 105, issue 2, pages 249-266

Modified edge finite elements for photonic crystals

Publication typeJournal Article
Publication date2006-09-27
Q1
Q1
SJR1.855
CiteScore4.1
Impact factor2.1
ISSN0029599X, 09453245
Computational Mathematics
Applied Mathematics
Abstract
We consider Maxwell’s equations with periodic coefficients as it is usually done for the modeling of photonic crystals. Using Bloch/Floquet theory, the problem reduces in a standard way to a modification of the Maxwell cavity eigenproblem with periodic boundary conditions. Following [8], a modification of edge finite elements is considered for the approximation of the band gap. The method can be used with meshes of tetrahedrons or parallelepipeds. A rigorous analysis of convergence is presented, together with some preliminary numerical results in 2D, which fully confirm the robustness of the method. The analysis uses well established results on the discrete compactness for edge elements, together with new sharper interpolation estimates.
Found 
Found 

Top-30

Journals

1
2
3
Journal of Scientific Computing
3 publications, 10.71%
Journal of Computational and Applied Mathematics
3 publications, 10.71%
Numerische Mathematik
2 publications, 7.14%
Journal of Computational Physics
2 publications, 7.14%
Communications in Computational Physics
2 publications, 7.14%
Journal of the Optical Society of America B: Optical Physics
2 publications, 7.14%
ACM Transactions on Mathematical Software
1 publication, 3.57%
Mathematical Models and Methods in Applied Sciences
1 publication, 3.57%
Foundations of Computational Mathematics
1 publication, 3.57%
Computing (Vienna/New York)
1 publication, 3.57%
Computer Methods in Applied Mechanics and Engineering
1 publication, 3.57%
Computers and Mathematics with Applications
1 publication, 3.57%
Chinese Physics B
1 publication, 3.57%
Journal of Lightwave Technology
1 publication, 3.57%
Acta Numerica
1 publication, 3.57%
Journal of the Optical Society of America A: Optics and Image Science, and Vision
1 publication, 3.57%
Optics Express
1 publication, 3.57%
1
2
3

Publishers

1
2
3
4
5
6
7
Springer Nature
7 publications, 25%
Elsevier
7 publications, 25%
Optica Publishing Group
5 publications, 17.86%
Cambridge University Press
3 publications, 10.71%
Association for Computing Machinery (ACM)
1 publication, 3.57%
World Scientific
1 publication, 3.57%
IOP Publishing
1 publication, 3.57%
1
2
3
4
5
6
7
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
BOFFI D., Conforti M., GASTALDI L. Modified edge finite elements for photonic crystals // Numerische Mathematik. 2006. Vol. 105. No. 2. pp. 249-266.
GOST all authors (up to 50) Copy
BOFFI D., Conforti M., GASTALDI L. Modified edge finite elements for photonic crystals // Numerische Mathematik. 2006. Vol. 105. No. 2. pp. 249-266.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1007/s00211-006-0037-y
UR - https://doi.org/10.1007/s00211-006-0037-y
TI - Modified edge finite elements for photonic crystals
T2 - Numerische Mathematik
AU - BOFFI, DANIELE
AU - Conforti, Matteo
AU - GASTALDI, LUCIA
PY - 2006
DA - 2006/09/27
PB - Springer Nature
SP - 249-266
IS - 2
VL - 105
SN - 0029-599X
SN - 0945-3245
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2006_BOFFI,
author = {DANIELE BOFFI and Matteo Conforti and LUCIA GASTALDI},
title = {Modified edge finite elements for photonic crystals},
journal = {Numerische Mathematik},
year = {2006},
volume = {105},
publisher = {Springer Nature},
month = {sep},
url = {https://doi.org/10.1007/s00211-006-0037-y},
number = {2},
pages = {249--266},
doi = {10.1007/s00211-006-0037-y}
}
MLA
Cite this
MLA Copy
BOFFI, DANIELE, et al. “Modified edge finite elements for photonic crystals.” Numerische Mathematik, vol. 105, no. 2, Sep. 2006, pp. 249-266. https://doi.org/10.1007/s00211-006-0037-y.
Found error?