Mining full, inner and tail periodic patterns with perfect, imperfect and asynchronous periodicity simultaneously
Тип публикации: Journal Article
Дата публикации: 2021-04-05
scimago Q1
wos Q2
БС1
SJR: 1.019
CiteScore: 8.2
Impact factor: 4.3
ISSN: 13845810, 1573756X
Computer Science Applications
Information Systems
Computer Networks and Communications
Краткое описание
Periodic pattern has been utilized in many real life applications, such as weather conditions in a particular season, transactions in a superstore, power consumption, computer network fault analysis, and analysis of DNA and protein sequences. Periodic pattern mining is a popular though challenging research field in data mining because periodic patterns are of different types (namely full, inner, and tail patterns) and varied periodicities (namely perfect, imperfect, and asynchronous periodicity). Previous periodic pattern mining methods have some disadvantages: (1) Previous methods have to find different patterns separately; (2) They require postprocessing such as level-by-level join strategies for mining complex periodic patterns which have wildcards between two items. They cannot mine full, tail, and inner periodic patterns with perfect, imperfect, and asynchronous periodicities simultaneously. Therefore, an effective and comprehensive approach capable of discovering the above specified kinds of periodic patterns is needed. We propose a novel suffix tree-based algorithm, Mining dIfferent kinds of Periodic Patterns Simultaneously, MIPPS, to address the above issues. MIPPS finds different kinds of periodic patterns with different periodicities simultaneously without level-by-level join techniques using a novel incremental propagation generator. In addition, MIPPS mines periodic patterns efficiently using some pruning strategies. For the performance evaluation, we use both synthetic and real data to confirm good performance and scalability with complex periodic patterns.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
|
|
|
International Journal of Data Science and Analytics
2 публикации, 18.18%
|
|
|
Applied Intelligence
1 публикация, 9.09%
|
|
|
Information Sciences
1 публикация, 9.09%
|
|
|
Lecture Notes in Computer Science
1 публикация, 9.09%
|
|
|
Intelligent Data Analysis
1 публикация, 9.09%
|
|
|
International Journal of Machine Learning and Cybernetics
1 публикация, 9.09%
|
|
|
Expert Systems
1 публикация, 9.09%
|
|
|
1
2
|
Издатели
|
1
2
3
4
5
|
|
|
Springer Nature
5 публикаций, 45.45%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 27.27%
|
|
|
Elsevier
1 публикация, 9.09%
|
|
|
SAGE
1 публикация, 9.09%
|
|
|
Wiley
1 публикация, 9.09%
|
|
|
1
2
3
4
5
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
11
Всего цитирований:
11
Цитирований c 2024:
5
(45.45%)
Самый цитирующий журнал
Цитирований в журнале:
2
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Huang J. W., Jaysawal B. P., Wang C. Mining full, inner and tail periodic patterns with perfect, imperfect and asynchronous periodicity simultaneously // Data Mining and Knowledge Discovery. 2021. Vol. 35. No. 4. pp. 1225-1257.
ГОСТ со всеми авторами (до 50)
Скопировать
Huang J. W., Jaysawal B. P., Wang C. Mining full, inner and tail periodic patterns with perfect, imperfect and asynchronous periodicity simultaneously // Data Mining and Knowledge Discovery. 2021. Vol. 35. No. 4. pp. 1225-1257.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1007/s10618-021-00753-9
UR - https://doi.org/10.1007/s10618-021-00753-9
TI - Mining full, inner and tail periodic patterns with perfect, imperfect and asynchronous periodicity simultaneously
T2 - Data Mining and Knowledge Discovery
AU - Huang, Jen Wei
AU - Jaysawal, Bijay Prasad
AU - Wang, Cheng-Chung
PY - 2021
DA - 2021/04/05
PB - Springer Nature
SP - 1225-1257
IS - 4
VL - 35
SN - 1384-5810
SN - 1573-756X
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Huang,
author = {Jen Wei Huang and Bijay Prasad Jaysawal and Cheng-Chung Wang},
title = {Mining full, inner and tail periodic patterns with perfect, imperfect and asynchronous periodicity simultaneously},
journal = {Data Mining and Knowledge Discovery},
year = {2021},
volume = {35},
publisher = {Springer Nature},
month = {apr},
url = {https://doi.org/10.1007/s10618-021-00753-9},
number = {4},
pages = {1225--1257},
doi = {10.1007/s10618-021-00753-9}
}
Цитировать
MLA
Скопировать
Huang, Jen Wei, et al. “Mining full, inner and tail periodic patterns with perfect, imperfect and asynchronous periodicity simultaneously.” Data Mining and Knowledge Discovery, vol. 35, no. 4, Apr. 2021, pp. 1225-1257. https://doi.org/10.1007/s10618-021-00753-9.