Journal of Inorganic and Organometallic Polymers and Materials, volume 32, issue 9, pages 3368-3394

Acyclic Diene Metathesis (ADMET) as Powerful Tool for Functional Polymers with Versatile Architectures

Publication typeJournal Article
Publication date2022-06-14
scimago Q2
SJR0.613
CiteScore8.3
Impact factor3.9
ISSN15741443, 15741451
Materials Chemistry
Polymers and Plastics
Abstract
Since the discovery of acyclic diene metathesis (ADMET), researchers have gradually developed ADMET polymerization into a mature methodology for the preparation of versatile polymers with various precise functional groups. As a representative stepwise polymerization method, ADMET enable the polymerization of relatively “inert” acyclic diene monomers. By rational design of monomer structures, the resulted functional materials can be used in various fields such as biomedicine, optoelectronics and stimulus responsive materials. This review will focus on the synthetic strategies of functional polymers with various precise moieties by ADMET over the past few decades, especially functional polyesters, polyethers, polyolefins, and conjugated polymers as well as organometallic polymers will be summarized. Acyclic diene metathesis not only provides facile method for the polymerization of relatively “inert” acyclic diene monomers, but also gives polymers with versatile architectures and functionalities that cannot prepared via conventional polymerization methods. This comprehensive review summarizes the rational design of monomers for ADMET polymerization and corresponding synthesis of functional polyesters, polyethers, polyolefins, and conjugated polymers as well as organometallic polymers.
Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?