Environmental Science and Pollution Research, volume 30, issue 22, pages 62262-62280

A multi-criteria evaluation and optimization of sustainable fiber-reinforced concrete developed with nylon waste fibers and micro-silica

Babar Ali 1
Marc Azab 2
Rawaz Kurda 3, 4, 5
Nabil Ben Kahla 6, 7
Miniar Atig 7, 8
Publication typeJournal Article
Publication date2023-03-20
scimago Q1
SJR1.006
CiteScore8.7
Impact factor
ISSN09441344, 16147499
General Medicine
Environmental Chemistry
Health, Toxicology and Mutagenesis
Pollution
Abstract
Nylon waste fibers similar to new nylon fibers possess high tensile strength and toughness; hence, they can be used as an eco-friendly discrete reinforcement in high-strength concrete. This study aimed to analyze the mechanical and permeability characteristics and life cycle impact of high-strength concrete with varying amounts of nylon waste fiber and micro-silica. The results proved that nylon waste fiber was highly beneficial to the tensile and flexural strength of concrete. The incorporation of a 1% volume of nylon waste fiber caused net improvements of 50% in the flexural strength of concrete. At the combined addition of 0.5% volume fraction of nylon fiber and 7.5% micro-silica, splitting tensile and flexural strength of high-strength concrete experienced net improvements of 49% and 55%, respectively. Nylon fiber-reinforced concrete exhibited a ductile response and high flexural toughness and residual strength compared to plain concrete. A low volume fraction of waste fibers was beneficial to the permeability resistance of high-strength concrete against water absorption and chloride permeability, while a high volume (1% by volume fraction) of fiber was harmful to the permeability-resistance of concrete. For the best mechanical performance of high-strength concrete, 0.5% nylon waste fiber can be used with 7.5% micro-silica. The use of micro-silica minimized the negative effect of the high volume of fibers on the permeability resistance of high-strength concrete. The addition of nylon waste fibers (at 0.25% and 0.5% volume) and micro-silica also reduced carbon emissions per unit strength of concrete.
Found 
Found 

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
4
5
6
7
1
2
3
4
5
6
7
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?