Subnormal block Toeplitz operators
Mankunikuzhiyil Abhinand
1
,
Raúl E Curto
2
,
In Sung Hwang
3
,
WOO YOUNG LEE
4
,
Thankarajan Prasad
1
Publication type: Journal Article
Publication date: 2025-01-21
scimago Q1
wos Q2
SJR: 1.119
CiteScore: 1.7
Impact factor: 0.9
ISSN: 00217670, 15658538
Abstract
In this paper we consider the subnormality of block Toeplitz operators TΦ, where Φ is an n × n matrix-valued function on the unit circle $$\mathbb{T}$$ of the form $$\Phi=Q\Phi^{\ast}\;\;\;\;(Q\;\text{is}\; \text{a}\; \text{finite}\; \text{Blaschke-Potapov}\; \text{product})$$ This is related to a matrix-valued version of Halmos’ Problem 5 and the Nakazi–Takahashi Theorem. We ask whether TΦ is either normal or analytic if TΦ is subnormal, where Φ is of the above form. We give answers to this problem for different cases of the symbol. Moreover, we provide a sufficient condition for the answer to be affirmative when Φ* is not of bounded type.
Found
Nothing found, try to update filter.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Total citations:
0
Cite this
GOST |
RIS |
BibTex
Cite this
RIS
Copy
TY - JOUR
DO - 10.1007/s11854-025-0358-3
UR - https://link.springer.com/10.1007/s11854-025-0358-3
TI - Subnormal block Toeplitz operators
T2 - Journal d'Analyse Mathematique
AU - Abhinand, Mankunikuzhiyil
AU - Curto, Raúl E
AU - In Sung Hwang
AU - LEE, WOO YOUNG
AU - Prasad, Thankarajan
PY - 2025
DA - 2025/01/21
PB - Springer Nature
SN - 0021-7670
SN - 1565-8538
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2025_Abhinand,
author = {Mankunikuzhiyil Abhinand and Raúl E Curto and In Sung Hwang and WOO YOUNG LEE and Thankarajan Prasad},
title = {Subnormal block Toeplitz operators},
journal = {Journal d'Analyse Mathematique},
year = {2025},
publisher = {Springer Nature},
month = {jan},
url = {https://link.springer.com/10.1007/s11854-025-0358-3},
doi = {10.1007/s11854-025-0358-3}
}