volume 213 issue 1 pages 423-441

Invariant convex sets in polar representations

Publication typeJournal Article
Publication date2016-04-15
scimago Q1
wos Q2
SJR0.951
CiteScore1.5
Impact factor0.8
ISSN00212172, 15658511
General Mathematics
Abstract
We study a compact invariant convex set E in a polar representation of a compact Lie group. Polar representations are given by the adjoint action of K on p, where K is a maximal compact subgroup of a real semisimple Lie group G with Lie algebra g = k ⊕ p. If a ⊂ p is a maximal abelian subalgebra, then P = E ∩ a is a convex set in a. We prove that up to conjugacy the face structure of E is completely determined by that of P and that a face of E is exposed if and only if the corresponding face of P is exposed. We apply these results to the convex hull of the image of a restricted1 momentum map.
Found 
Found 

Top-30

Journals

1
2
Journal of Geometry and Physics
2 publications, 14.29%
Proceedings of the American Mathematical Society
1 publication, 7.14%
Annali di Matematica Pura ed Applicata
1 publication, 7.14%
Sao Paulo Journal of Mathematical Sciences
1 publication, 7.14%
Transformation Groups
1 publication, 7.14%
Advances in Mathematics
1 publication, 7.14%
Mathematische Nachrichten
1 publication, 7.14%
Advances in Geometry
1 publication, 7.14%
Nonlinear Partial Differential Equations
1 publication, 7.14%
Bulletin of the Brazilian Mathematical Society
1 publication, 7.14%
Annals of Global Analysis and Geometry
1 publication, 7.14%
Forum of Mathematics, Sigma
1 publication, 7.14%
Bulletin of the London Mathematical Society
1 publication, 7.14%
1
2

Publishers

1
2
3
4
5
6
Springer Nature
6 publications, 42.86%
Elsevier
3 publications, 21.43%
Wiley
2 publications, 14.29%
American Mathematical Society
1 publication, 7.14%
Walter de Gruyter
1 publication, 7.14%
Cambridge University Press
1 publication, 7.14%
1
2
3
4
5
6
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
14
Share
Cite this
GOST |
Cite this
GOST Copy
Biliotti L., Ghigi A., Heinzner P. Invariant convex sets in polar representations // Israel Journal of Mathematics. 2016. Vol. 213. No. 1. pp. 423-441.
GOST all authors (up to 50) Copy
Biliotti L., Ghigi A., Heinzner P. Invariant convex sets in polar representations // Israel Journal of Mathematics. 2016. Vol. 213. No. 1. pp. 423-441.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1007/s11856-016-1325-6
UR - https://doi.org/10.1007/s11856-016-1325-6
TI - Invariant convex sets in polar representations
T2 - Israel Journal of Mathematics
AU - Biliotti, Leonardo
AU - Ghigi, Alessandro
AU - Heinzner, Peter
PY - 2016
DA - 2016/04/15
PB - Springer Nature
SP - 423-441
IS - 1
VL - 213
SN - 0021-2172
SN - 1565-8511
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2016_Biliotti,
author = {Leonardo Biliotti and Alessandro Ghigi and Peter Heinzner},
title = {Invariant convex sets in polar representations},
journal = {Israel Journal of Mathematics},
year = {2016},
volume = {213},
publisher = {Springer Nature},
month = {apr},
url = {https://doi.org/10.1007/s11856-016-1325-6},
number = {1},
pages = {423--441},
doi = {10.1007/s11856-016-1325-6}
}
MLA
Cite this
MLA Copy
Biliotti, Leonardo, et al. “Invariant convex sets in polar representations.” Israel Journal of Mathematics, vol. 213, no. 1, Apr. 2016, pp. 423-441. https://doi.org/10.1007/s11856-016-1325-6.