Invariant convex sets in polar representations
Publication type: Journal Article
Publication date: 2016-04-15
scimago Q1
wos Q2
SJR: 0.951
CiteScore: 1.5
Impact factor: 0.8
ISSN: 00212172, 15658511
General Mathematics
Abstract
We study a compact invariant convex set E in a polar representation of a compact Lie group. Polar representations are given by the adjoint action of K on p, where K is a maximal compact subgroup of a real semisimple Lie group G with Lie algebra g = k ⊕ p. If a ⊂ p is a maximal abelian subalgebra, then P = E ∩ a is a convex set in a. We prove that up to conjugacy the face structure of E is completely determined by that of P and that a face of E is exposed if and only if the corresponding face of P is exposed. We apply these results to the convex hull of the image of a restricted1 momentum map.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
1
2
|
|
|
Journal of Geometry and Physics
2 publications, 14.29%
|
|
|
Proceedings of the American Mathematical Society
1 publication, 7.14%
|
|
|
Annali di Matematica Pura ed Applicata
1 publication, 7.14%
|
|
|
Sao Paulo Journal of Mathematical Sciences
1 publication, 7.14%
|
|
|
Transformation Groups
1 publication, 7.14%
|
|
|
Advances in Mathematics
1 publication, 7.14%
|
|
|
Mathematische Nachrichten
1 publication, 7.14%
|
|
|
Advances in Geometry
1 publication, 7.14%
|
|
|
Nonlinear Partial Differential Equations
1 publication, 7.14%
|
|
|
Bulletin of the Brazilian Mathematical Society
1 publication, 7.14%
|
|
|
Annals of Global Analysis and Geometry
1 publication, 7.14%
|
|
|
Forum of Mathematics, Sigma
1 publication, 7.14%
|
|
|
Bulletin of the London Mathematical Society
1 publication, 7.14%
|
|
|
1
2
|
Publishers
|
1
2
3
4
5
6
|
|
|
Springer Nature
6 publications, 42.86%
|
|
|
Elsevier
3 publications, 21.43%
|
|
|
Wiley
2 publications, 14.29%
|
|
|
American Mathematical Society
1 publication, 7.14%
|
|
|
Walter de Gruyter
1 publication, 7.14%
|
|
|
Cambridge University Press
1 publication, 7.14%
|
|
|
1
2
3
4
5
6
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
14
Total citations:
14
Citations from 2024:
5
(35.72%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Biliotti L., Ghigi A., Heinzner P. Invariant convex sets in polar representations // Israel Journal of Mathematics. 2016. Vol. 213. No. 1. pp. 423-441.
GOST all authors (up to 50)
Copy
Biliotti L., Ghigi A., Heinzner P. Invariant convex sets in polar representations // Israel Journal of Mathematics. 2016. Vol. 213. No. 1. pp. 423-441.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1007/s11856-016-1325-6
UR - https://doi.org/10.1007/s11856-016-1325-6
TI - Invariant convex sets in polar representations
T2 - Israel Journal of Mathematics
AU - Biliotti, Leonardo
AU - Ghigi, Alessandro
AU - Heinzner, Peter
PY - 2016
DA - 2016/04/15
PB - Springer Nature
SP - 423-441
IS - 1
VL - 213
SN - 0021-2172
SN - 1565-8511
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2016_Biliotti,
author = {Leonardo Biliotti and Alessandro Ghigi and Peter Heinzner},
title = {Invariant convex sets in polar representations},
journal = {Israel Journal of Mathematics},
year = {2016},
volume = {213},
publisher = {Springer Nature},
month = {apr},
url = {https://doi.org/10.1007/s11856-016-1325-6},
number = {1},
pages = {423--441},
doi = {10.1007/s11856-016-1325-6}
}
Cite this
MLA
Copy
Biliotti, Leonardo, et al. “Invariant convex sets in polar representations.” Israel Journal of Mathematics, vol. 213, no. 1, Apr. 2016, pp. 423-441. https://doi.org/10.1007/s11856-016-1325-6.