Modified Extremal Kähler Metrics and Multiplier Hermitian–Einstein Metrics
3
Department of Mathematics, Institute of Science Tokyo, Tokyo, Japan
|
Publication type: Journal Article
Publication date: 2025-02-19
scimago Q1
wos Q1
SJR: 1.248
CiteScore: 2.3
Impact factor: 1.5
ISSN: 10506926, 1559002X
Abstract
Motivated by the notion of multiplier Hermitian–Einstein metric of type $$\sigma $$ introduced by Mabuchi, we introduce the notion of $$\sigma $$ -extremal Kähler metrics on compact Kähler manifolds, which generalizes Calabi’s extremal Kähler metrics. We characterize the existence of this metric in terms of the coercivity of a certain functional on the space of Kähler metrics to show that, on a Fano manifold, the existence of a multiplier Hermitian–Einstein metric of type $$\sigma $$ implies the existence of a $$\sigma $$ -extremal Kähler metric.
Found
Nothing found, try to update filter.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Total citations:
0
Cite this
GOST |
RIS |
BibTex
Cite this
GOST
Copy
Nakagawa Y. et al. Modified Extremal Kähler Metrics and Multiplier Hermitian–Einstein Metrics // Journal of Geometric Analysis. 2025. Vol. 35. No. 4. 104
GOST all authors (up to 50)
Copy
Nakagawa Y., Nakamura S. Modified Extremal Kähler Metrics and Multiplier Hermitian–Einstein Metrics // Journal of Geometric Analysis. 2025. Vol. 35. No. 4. 104
Cite this
RIS
Copy
TY - JOUR
DO - 10.1007/s12220-025-01936-2
UR - https://link.springer.com/10.1007/s12220-025-01936-2
TI - Modified Extremal Kähler Metrics and Multiplier Hermitian–Einstein Metrics
T2 - Journal of Geometric Analysis
AU - Nakagawa, Yasuhiro
AU - Nakamura, Satoshi
PY - 2025
DA - 2025/02/19
PB - Springer Nature
IS - 4
VL - 35
SN - 1050-6926
SN - 1559-002X
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2025_Nakagawa,
author = {Yasuhiro Nakagawa and Satoshi Nakamura},
title = {Modified Extremal Kähler Metrics and Multiplier Hermitian–Einstein Metrics},
journal = {Journal of Geometric Analysis},
year = {2025},
volume = {35},
publisher = {Springer Nature},
month = {feb},
url = {https://link.springer.com/10.1007/s12220-025-01936-2},
number = {4},
pages = {104},
doi = {10.1007/s12220-025-01936-2}
}