The Ricci-flatness that lurks in weight

Publication typeJournal Article
Publication date2024-12-09
scimago Q1
wos Q1
SJR0.988
CiteScore2.8
Impact factor1.7
ISSN11391138, 19882807
Abstract
We introduce two constructions to obtain left-invariant Ricci-flat pseudo-Riemannian metrics on nilpotent Lie groups, one based on gradings, the other on filtrations, both depending on the combinatorics of the set of weights. As an application, we show that every nilpotent Lie algebra of dimension up to 7 and every nice nilpotent Lie algebra of dimension up to 9 admit an indefinite Ricci-flat metric.
Found 
Found 

Top-30

Journals

1
Journal of Geometric Analysis
1 publication, 100%
1

Publishers

1
Springer Nature
1 publication, 100%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
1
Share
Cite this
GOST |
Cite this
GOST Copy
Conti D. The Ricci-flatness that lurks in weight // Revista Matematica Complutense. 2024.
GOST all authors (up to 50) Copy
Conti D. The Ricci-flatness that lurks in weight // Revista Matematica Complutense. 2024.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1007/s13163-024-00512-6
UR - https://link.springer.com/10.1007/s13163-024-00512-6
TI - The Ricci-flatness that lurks in weight
T2 - Revista Matematica Complutense
AU - Conti, Diego
PY - 2024
DA - 2024/12/09
PB - Springer Nature
SN - 1139-1138
SN - 1988-2807
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Conti,
author = {Diego Conti},
title = {The Ricci-flatness that lurks in weight},
journal = {Revista Matematica Complutense},
year = {2024},
publisher = {Springer Nature},
month = {dec},
url = {https://link.springer.com/10.1007/s13163-024-00512-6},
doi = {10.1007/s13163-024-00512-6}
}