On geometric definitions of quasisymmetric mappings
Publication type: Journal Article
Publication date: 2025-01-16
scimago Q1
wos Q1
SJR: 0.988
CiteScore: 2.8
Impact factor: 1.7
ISSN: 11391138, 19882807
Abstract
This paper focuses on the properties of quasisymmetric self–mappings of $$\mathbb {R}^n$$ with $$n\ge 2$$ . We obtain several geometric characterizations of quasisymmetric homeomorphisms in terms of ring domains and all pairs of disjoint continua by using conformal moduli and geometric moduli recently introduced by Tukia and Väisälä. As an application, we establish six necessary and sufficient conditions for a homeomorphism to be a quasimöbius transformation of the Riemann sphere $$\mathbb {\overline{R}}^n$$ onto itself.
Found
Nothing found, try to update filter.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Total citations:
0
Cite this
GOST |
RIS |
BibTex
Cite this
RIS
Copy
TY - JOUR
DO - 10.1007/s13163-024-00515-3
UR - https://link.springer.com/10.1007/s13163-024-00515-3
TI - On geometric definitions of quasisymmetric mappings
T2 - Revista Matematica Complutense
AU - Zhou, Qingshan
AU - Rasila, Antti
AU - Yang, Zhiqiang
PY - 2025
DA - 2025/01/16
PB - Springer Nature
SN - 1139-1138
SN - 1988-2807
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2025_Zhou,
author = {Qingshan Zhou and Antti Rasila and Zhiqiang Yang},
title = {On geometric definitions of quasisymmetric mappings},
journal = {Revista Matematica Complutense},
year = {2025},
publisher = {Springer Nature},
month = {jan},
url = {https://link.springer.com/10.1007/s13163-024-00515-3},
doi = {10.1007/s13163-024-00515-3}
}